
 

 

NEUROSCIENCE RESEARCH NOTES 

 
 

Task absorption and job demands: exploring task 
performance through neural and pupillary data 
Jesus Juyumaya 1* and Andrea Leal 2 
 
1 Escuela de Ingeniería Comercial, Facultad de Economía y Negocios, Universidad Santo Tomás, Santiago, Chile 
2 Escuela de Psicología, Facultad de Ciencias Sociales y Comunicaciones, Universidad Santo Tomás, Santiago, Chile 
* Correspondence: jesusjuyumayafu@santotomas.cl; Tel.: +56-22-362-4884 
 
Received: 18 August 2024; Accepted: 17 December 2024; Published: 13 May 2025 
Edited by: King Hwa Ling (Universiti Putra Malaysia, Malaysia) 
Reviewed by: Hafidah Umar (Universiti Sains Malaysia, Malaysia);  
Dorjnambar Balgansuren (Brain and Mind Research Institute, Mongolia) 
https://doi.org/10.31117/neuroscirn.v8i2.390 
 

Abstract: This study investigates the relationship between task characteristics, episodic absorption, 
and performance, based on the job demands-resources theory. Given that modern tasks often 
require processing substantial data and making real-time decisions, they demand significant 
attentional focus. Absorption, defined as a temporary state of deep attentional engagement, is 
thought to enhance task performance and efficiency. To explore this, we conducted an n-back task 
with participants, a task that requires focused, voluntary attentional control. Physiological and 
neural data were collected, with a particular focus on pupillary dynamics and the P300 wave, an 
event-related potential marker associated with attentional and cognitive processes. The study 
aimed to test three hypotheses: (a) absorption, as a temporary cognitive state, enhances 
performance and task efficiency; (b) absorption episodes are linked to activation in the P300 wave 
and pupillary responses; and (c) task demands and resources significantly impact the occurrence of 
absorption episodes. Specifically, we expected high job demands coupled with high resources to 
result in frequent absorption episodes, while high demands with low resources and low demands 
with high resources would lead to fewer episodes. Findings from this research may provide insights 
into how task design and resource allocation influence cognitive engagement, shedding light on 
optimal work conditions that foster absorption and improve performance. This research has 
potential applications in designing tasks and environments that promote sustained attentional 
engagement, ultimately contributing to more effective, resource-aligned organizational practices. 
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1.0  BACKGROUND 
With technology increasingly automating routine tasks, 
human operators must now tackle more cognitively 
demanding aspects of their work, necessitating 
extensive information processing (Demerouti, 2020). 
This shift highlights the importance of maintaining a 

sustained focus on time-sensitive tasks, particularly for 
employees in administrative roles. Task characteristics 
in these work environments can have either a positive 
or negative impact on an individual’s absorption, 
productivity, and performance (Tadić et al., 2014; 
Bakker & Demerouti, 2017).  
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The Episodic Process Model (EPM) similarly suggests 
that engagement and attention are crucial for optimal 
performance during task episodes (Beal et al., 2005). 
 
In today’s dynamic work landscape, technological 
advances bring new opportunities but also substantial 
challenges, as employees must balance demands with 
constant digital distractions. With over 30 percent of 
the global population actively using social media, 
maintaining focus on work tasks has become a 
considerable challenge (Schwab, 2017). Although work 
experiences are increasingly episodic — structured 
around cohesive time segments aimed at achieving 
objectives (Weiss et al., 2004) — not all tasks require 
deep absorption. For example, tasks like writing 
evaluations may not need sustained focus, while others, 
such as critical decision-making in supply chain 
management, cannot afford lapses in attention. 
 
From a neuroscience perspective, tasks that activate 
reward systems enhance task-focused behavior, often 
accompanied by strong absorption and intrinsic 
motivation (Berridge et al., 2009). Despite its 
significance, the relationship between task 
characteristics and episodic absorption remains 
underexplored. To address this gap, we will examine an 
n-back task under different conditions suggested by the 
Job Demands-Resources (JD-R) Theory (Bakker & 
Demerouti, 2017). 
 
Using eye-tracking and EEG, this experimental design 
will analyze the effects of episodic absorption on task 
performance and explore the role of task 
characteristics. By integrating neurocognitive insights, 
this study aims to advance the understanding of 
absorption in work contexts, offering practical 
applications for improving focus and productivity in 
realistic work environments (Barker, 1968). 
 
1.1  Literature review 
1.1.1  Episodic absorption 
We will begin by clarifying the concept of absorption, 
which is a shared dimension of both flow and 
engagement. In both cases, absorption is linked to 
cognitive aspects associated with sustained attention. 
As a dimension of engagement, absorption refers to a 
positive mental state in which individuals are so 
immersed in their work that time seems to pass quickly 
(Bakker et al., 2008). Research over the past two 
decades has confirmed Kahn's (1990) idea that 
absorption fluctuates with the natural ebbs and flows of 
work, varying not only from day to day but also within 

the same day or even during different work episodes 
(Bakker & Demerouti, 2017). 
 
In the context of flow, absorption occurs when people 
are fully engaged in a task, reaching a level of focus so 
intense that they have minimal self-reflection and 
limited awareness of their surroundings. This state, 
characterized by strong concentration and immersion, 
is often described as “flow” (Csikszentmihalyi & 
Csikszentmihalyi, 1988). There are key similarities 
between flow and engagement absorption: both involve 
specific episodes in which individuals are fully 
immersed, with the ability to block out environmental 
distractions. In such states, employees enter a level of 
focused attention where self-reflection is minimized, 
and they are scarcely aware of their surroundings 
(Bridgeman, 1992; Van der Linden et al., 2020). This 
experience is commonly referred to as absorption 
(Hopstaken et al., 2014). 
 
According to Van der Linden et al. (2020), key aspects of 
the absorption state include: (1) Fusion of action and 
awareness, where tasks are executed automatically; (2) 
High focus/concentration, indicating deep engagement; 
and (3) Reduced self-reflection/absence of worry, as 
concentration lowers self-awareness and distractors are 
ignored. Absorption is associated with several positive 
outcomes: (1) Improved performance, as absorbed 
individuals tend to achieve higher productivity (Bakker 
& Demerouti, 2017); (2) Enhanced creativity, as 
immersion fosters creative problem-solving 
(Csikszentmihalyi & Csikszentmihalyi, 1988); (3) 
Increased well-being, linked to greater happiness, 
satisfaction, and reduced stress; and (4) Sustained 
engagement, as frequent absorption episodes 
encourage ongoing commitment to activities 
(Nakamura & Csikszentmihalyi, 2014). 
 
Lupano Perugini and Waisman (2018) noted that 
individuals experiencing states of absorption at work 
dedicate substantial attentional resources to their tasks, 
often using large amounts of energy. This focus enables 
them to overcome workplace challenges, resulting in 
greater resilience and higher performance, which 
benefits both the individual and the organization. 
Salanova et al. (2006) highlighted that research on flow 
has primarily focused on identifying the elements and 
conditions that facilitate this state in workers. When 
employees experience absorption and focus on their 
tasks, they tend to have positive work experiences and 
may frequently enter states of flow.  
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However, there are still no established protocols for 
promoting flow in organizations (Sánchez et al., 2008). 
Sánchez et al. (2008) suggested that by understanding 
the components and antecedents of flow, organizations 
can develop tools and methods to foster it in the 
workplace. 
 
Not everyone, however, can easily reach states of 
absorption. Factors like higher educational attainment 
and intrinsically rewarding jobs (e.g., managerial roles 
or teaching) are associated with higher scores in flow 
dimensions compared to roles with lower intrinsic 
rewards, such as office or production work (Sánchez et 
al., 2008). Employees who exhibit high energy and 
identify strongly with their work also tend to build 
personal resources over time, leading to better task 
performance (Hopstaken et al., 2014; Bakker & 
Demerouti, 2017). Neuroscientific research has shown 
that tasks capable of activating reward systems energize 
task-oriented behavior and are often accompanied by 
strong absorption and intrinsic motivation (Berridge et 
al., 2009). 
 
The literature identifies several factors that promote 
task absorption: (1) Skill-task balance—when the task 
difficulty aligns well with an individual's skill level 
(Csikszentmihalyi & Csikszentmihalyi, 1988); (2) Clear 
goals—well-defined objectives provide purpose and 
facilitate focus (Locke & Latham, 1991); (3) Immediate 
feedback—timely feedback keeps individuals engaged 
(Csikszentmihalyi & Csikszentmihalyi, 1988); and (4) 
Autonomy—having control over one’s tasks enhances 
absorption (Deci & Ryan, 1985).  
 
However, absorption’s largely subjective nature and 
reliance on self-reported methods limit the construct’s 
validity, particularly in differentiating it from other 
states like motivation or focused performance (Kee & 
Wang, 2007; Sheldon et al., 2014). Though absorption is 
a cognitive component of both flow and engagement, 
engagement is more sustained over time, whereas flow 
is episodic. The distinction between absorption and 
related mental states, such as selective attention or 
concentration, remains unclear (Kee & Wang, 2007; 
Sheldon et al., 2021). 
 
1.1.2  Job demands and resources theory 
In a state of absorption, task characteristics have a 
significant influence on performance. Research 
indicates that when tasks are too easy, it is unlikely that 
individuals will reach a state of immersion; instead, they 
may experience boredom and mind wandering. 
Conversely, tasks that are overly demanding or difficult 

often lead to stress and a diminished sense of control 
(Keller, 2016). Both boredom and stress can disrupt flow 
experiences, while a moderate level of arousal is 
considered optimal for achieving a state of flow (Pfeiffer 
et al., 2014; Tozman et al., 2015). 
 
The Job Demands-Resources (JD-R) theory, proposed by 
Demerouti et al. (2001), provides a framework for 
understanding various mental states in the workplace. 
According to JD-R theory, job demands and resources 
initiate two distinct processes: strain and motivation 
(Tadić et al., 2014; Bakker & Demerouti, 2017). Job 
resources—encompassing physical, psychological, 
social, and organizational aspects of work—help 
individuals achieve their goals and foster personal 
growth, learning, and development (Bakker & 
Demerouti, 2017). In contrast, job demands—such as 
high work pressure, role overload, emotional demands, 
and poor environmental conditions—require sustained 
effort and are associated with physiological and 
psychological costs (Bakker & Demerouti, 2017). 
 
The literature on cognitive effort also sheds light on this 
process. Mental fatigue arises when cognitive resources 
are depleted through sustained mental tasks, signaling 
a higher risk of performance errors (Veldhuizen et al., 
2003). Typically, daily work activities can tire individuals, 
but they usually have enough energy to meet task 
demands. However, under high mental workload and 
fatigue, such as at the end of a workday, additional 
mental effort is required to maintain performance, 
mobilizing extra energy to counterbalance the fatigue 
(Hockey et al., 1986; Hockey, 1997; Gaillard, 2001). 
 
1.1.3  Pupillary dynamics and the P300 wave 
During attention-demanding cognitive tasks, certain 
brain regions consistently increase in activity, while 
others decrease. Absorption is a cognitive process that 
adapts to environmental demands and fluctuates over 
time. Thiele et al.’s research (2002) highlights those 
changes in cognitive processing that influence pupil 
activity, potentially signaling neural dynamics related to 
attention states. 
 
Pupil size fluctuations are linked to norepinephrine 
release, providing a time-sensitive indicator of attention 
shifts (Joshi et al., 2015). Additionally, gaze direction 
and blink rate offer insights into attention focus, 
revealing how individuals shift between internal 
thoughts and external stimuli (Wohltjen & Wheatley, 
2024). Recent, though inconclusive, evidence suggests 
that attention span may also correlate with pupil size 
(Mathôt, 2020). Pupil responses may functionally adjust 
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vision to meet different processing demands, whether 
focusing on narrow or wide spans of information 
(Mathôt, 2020). 
 
Several studies in cognitive neuroscience demonstrate 
a relationship between pupil diameter and mental 
effort (Beatty & Lucero-Wagoner, 2000; Just et al., 
2003). Other research links pupil diameter to task 
performance (Schneider & Fisk, 1982; Tsukahara et al., 
2016), with pupil size serving as a proxy for cognitive 
effort during tasks (Ares et al., 2012; Wyble et al., 2012; 
Yang & Yang, 2016; Krucien et al., 2017; Astudillo et al., 
2018). In tasks involving updating, shifting, and 
inhibition, pupil diameter aligns with changes in 
cognitive demand and, in some cases, predicts 
improved task performance. However, the literature 
has yet to clarify the practical relationship between 
pupil dynamics and the absorption of episodic or 
sustained tasks. Figure 1 shows a constricted pupil and 
a dilated pupil. 
 
 

Figure 1. Constricted and dilated pupils  
(Juyumaya et al., 2024). 

 
 
Studies indicate that a tendency to become fully 
absorbed in one’s work, akin to flow states, is associated 
with individual differences in dopaminergic system 
sensitivity—the brain’s behavioral reward system (Van 
der Linden et al., 2020). Additionally, the P300 event-
related potential (ERP) is associated with task 
engagement and access to memory systems (Polich, 
2007). The P300 component, primarily recorded in the 
frontocentral region, emerges in response to the 
attentional demands of a task (Posner & Petersen, 1990; 
Pardo et al., 1991; Posner & Driver, 1992; Polich, 2007) 
and is linked to the frontal dopaminergic network 
(Polich, 2007). Meanwhile, the P3b component, 
observed in parietal regions, is associated with 
attention and cognitive processes, such as working 
memory updates (Donchin & Coles, 1988). Figure 2 
shows the neural networks underlying attention. 
 
The P300 serves as a strategic indicator for processing 
new information, prompting individuals to adjust their 

strategies in response to current task demands 
(Donchin, 1981). Task-focused attention and goal-
directed behavior are typically associated with 
increased activity in the task-positive network and 
decreased activity in the task-negative network (Cabeza 
& Nyberg, 2000; Corbetta et al., 2008; Raichle, 2009). 
 
 

Figure 2. Neural networks underlying attention  
(Munakata et al., 2004). 

 
 
In this context, an employee's absorption level can be 
analyzed by observing the behavior of the P300 wave, 
which reflects cortical responsiveness to task-relevant 
stimuli driven by norepinephrine release from the locus 
coeruleus (Nieuwnhuis et al., 2005). Norepinephrine 
acts as a signal to focus attention on the environment 
(Bouret & Sara, 2004). Thus, the P300 wave serves as a 
neural correlate of absorption, revealing cognitive effort 
in response to varying job demands and resources 
during task performance. Figure 3 shows the P300 wave 
(positive activity at 300 milliseconds) caused by the 
presence of a novel stimulus. 
 
 

 
Figure 3. P300 wave caused by the presence of a novel 

stimulus (Olichney et al., 2022). 
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1.2  Methods 
A between-subjects experimental design will be 
employed, with participants randomly assigned to one 
of four conditions to explore different combinations of 
labor demand and resources: (1) Low labor 
demand/Low labor resource; (2) Low labor 
demand/High labor resource; (3) High labor 
demand/Low labor resource; and (4) High labor 
demand/High labor resource. 
 
The task will be programmed in Python and will be 
based on the n-back task, a continuous interactive 
activity used to measure and train working memory, 
fluid intelligence, and attention (Hirst & Kalmar, 1987). 
This task can be diversified, allowing for adjustments to 
the stimuli to maintain novelty for participants. 
 
In this study, we will modify the traditional n-back task 
into a calendar scheduling task. Participants will be 
asked to schedule meetings based on a pre-presented 
weekly calendar. The labor demand is defined by the 
amount of information participants must retain to 
schedule meetings (i.e., how far back in time they need 
to recall information), while the labor resource is 
determined by the viewing time allotted for the 
schedule (either two or five seconds). Participants will 
then fill in the blanks to schedule meetings, ensuring no 
overlap with existing appointments (Bluedorn et al., 
1992; Vail & Bluedorm, 2003; Kühnel et al., 2011; 
Krucien et al., 2017).  
 
Task performance will be evaluated based on two 
criteria: (1) whether participants successfully scheduled 
meetings without overlaps, and (2) whether they 
completed the task within the provided time frame. 
Figure 4 shows the four conditions that will be 
programmed and randomly distributed among four 
groups of individuals. 
 
Participants 
Based on the average sample size of 57 investigations 
using Electroencephalography (EEG) during tasks 
(Hinojosa et al., 2015), 23 workers will be recruited to 
participate in a meeting session scheduling task. An 
additional 5 subjects will be recruited as part of the 
experiment's piloting. Adding a total of 28 participants. 
I will follow a repeated measures design. All participants 
will be exposed to the entire experimental condition. 
 
The Inclusion criteria is people over 18 years of age, with 
more than 2 years of work experience and with a 
current activity related to administrative and 
managerial functions. 

Exclusion criteria 
We consider the following exclusion criteria: 
a) Pupillary diameter: People with vision problems or 
who need to wear glasses during the task. The use of 
glasses can interfere with measurement devices due to 
the glare reflected in the corrective lenses, which is 
visible on a monitor. In addition, because some 
neuropsychological diagnoses and substance abuse 
(e.g., caffeine, alcohol, cannabis) interfere with the 
measurement of brain waves and pupillary dilation, 
subjects with neuropsychological diagnoses and a 
history of substance abuse will be excluded. 
 
b) Brain waves: Individuals with clinical diagnoses of 
neurodevelopmental type, such as Attention Deficit 
Disorder (ADHD), Autism Spectrum Disorder (ASD), and 
others, in addition to the substances mentioned in the 
previous section. Along with informed consent, 
participants must complete a form declaring these 
aspects. 
 
Procedures 
During a single experimental session lasting no more 
than 90 minutes, we will record continuous EEG signals 
using a 32-channel EMOTIV Flex gel-based mobile EEG 
system, sampling data at a rate of 256 Hz. Markers will 
be generated using custom Python scripts. Additionally, 
eye-tracking data will be captured using a Pupil-Core 
binocular eye-tracking headset, which provides 200 Hz 
infrared tracking and online gaze estimates at 120 fps.  
 
This data will facilitate the calculation of fixation-related 
cortical potentials during stimulus presentation and 
feedback. We will also measure the initial distance 
between participants’ eyes and the screen to enable 
post-hoc calculations of saccadic velocities. This will 
allow for regression-based separation of overlapping 
event-related brain activity using the Unfolding toolbox 
(Ehinger & Dimigen, 2019).  
 
Given the overlapping nature of eye movement events 
in the visualization task (Dimigen et al., 2011), unmixing 
these signals will help control for event-related 
potential (ERP) overlap and individual differences, 
employing a novel analytical approach rarely used in 
traditional EEG experiments. The session will include 
participant questionnaires and sociodemographic 
surveys, followed by the setup and testing of the 
equipment. Finally, participants will be debriefed and 
have the opportunity to ask any remaining questions. 
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Figure 4: The proposed task performance trial conditions.
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Instruments 
We will utilize a combined EEG, mobile brain and body 
imaging (MoBI), and eye-tracking approach to examine 
brain information processing during free visual 
exploration of the programming task. A simplified MoBI 
(Gramann et al., 2011) will integrate eye tracking with 
brain activity sensors.  
 
The PupilLabs mobile eye tracker will record data at 200 
Hz and 120 fps. Using pre-prepared scripts, we will 
synchronize EEG and eye-tracking signals at the start of 
the experimental task to analyze evoked brain activity 
across four experimental conditions. All physiological 
measurements are non-invasive, posing no risk to 
participants or researchers. 
 
Self-reported absorption 
We will employ the Utrecht Engagement Scale (UWES-
9), specifically the adapted short version focusing on the 
six items of the absorption dimension (cognitive 
dimension) developed by Schaufeli et al. (2006) and 
validated in the Chilean context by Juyumaya (2019). 
This scale employs a 5-point Likert-type response 
format, ranging from “Strongly disagree” (1) to 
“Strongly agree” (5), and demonstrates strong 
psychometric properties (Cronbach's alpha = 0.95). 
 
Analysis strategy 
EEG and eye-tracking data will be analyzed using Python 
(version 3.10). SPSS (version 23) will complement the 
analysis, facilitating regression and psychometric 
evaluations of the utilized scale. 
 
Ethical aspects 
Ethical approval will be secured from the relevant 
institutional ethics committee. All measurements are 
non-invasive and pose no risk to participants. Informed 
consent will be obtained from each participant prior to 
their involvement in the study. Participation contributes 
to national scientific knowledge and development, with 
no associated risks. 
 
2.0  HYPOTHESIS 
Based on the preceding discussion, the following 
hypotheses are proposed: 
 
1. Absorption is a transient cognitive state that 

positively influences task performance and output. 
2. Episodes of absorption are associated with increased 

activation of the P300 wave and distinct pupillary 
dynamics. 

3. Task characteristics, specifically job demands and 
resources, significantly affect the frequency and 
intensity of temporary absorption episodes. 
a. High work demands combined with high 

resources will lead to a greater frequency of 
absorption episodes  

b. High demands paired with low resources will 
result in a lower frequency of absorption 
episodes. 

c. High resources but low demands will also lead 
to a reduced presence of absorption episodes 

 
These hypotheses aim to investigate how cognitive 
absorption states are influenced by task design and to 
identify potential neural and physiological markers of 
such states 
 
This hypothetical study aims to empirically establish the 
connection between task characteristics, episodic 
absorption, and performance outcomes. The 
anticipated findings are expected to demonstrate that 
specific job demands and resources embedded within 
task design have a significant impact on both P300 wave 
activity and pupillary dynamics.  
 
We propose that tasks perceived as novel and engaging 
foster episodic absorption, highlighting the influence of 
personal interest and task appeal in triggering 
absorption states. Additionally, the positive association 
between episodic absorption and task performance 
reinforces the value of designing work environments 
that support deep cognitive engagement, ultimately 
enhancing productivity and effectiveness. 
 
The results of this study highlight the importance of 
considering cognitive factors, such as absorption, when 
optimizing performance in dynamic work settings. 
Moreover, neurofeedback-based training emerges as a 
potential tool for enhancing task performance, 
providing employees with techniques to improve focus 
and engagement in the workplace. 
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