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Abstract: Bipolar disorder, major depressive disorder, and schizophrenia often have overlapping 
symptoms that lead to frequent misdiagnoses. To address the need for an objective, quantitative 
and accurate tool for diagnosing mental disorders, we developed an AI-based approach using 
electroencephalography (EEG) signals. Our study analysed data from Seoul National University, 
including EEG assessments and medical records of 383 subjects: bipolar disorder (n=67), major 
depressive disorder (n=199), and schizophrenia (n=117). Our method involved three steps: (1) 
balancing the dataset with SMOTE up-sampling, (2) extracting key features, and (3) employing 
machine learning and deep learning models for classification. The combination of Independent 
Component Analysis, ANOVA F-value, and Gradient Boosting yielded the highest accuracy of 96.67% 
and minimal misclassifications. These results suggest this approach could significantly improve the 
correct diagnosis of mental disorders, and it is feasible to quantify the EEG signals to obtain an 
objective computer-aided diagnosis system. 
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1.0 INTRODUCTION 
In 2022, the World Health Organization (WHO) 
reported that one in every eight people worldwide 
experienced mental health conditions (Mental 

Disorders, n.d.). In particular, approximately 40 million 
people are living with bipolar disorder, 280 million with 
major depressive disorder, and 24 million with 
schizophrenia. These conditions are accompanied by 
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behavioral and cognitive changes that have a 
significant impact on individuals’ personal lives, social 
interactions, and economic well-being.  
 
The conventional diagnostic approach for mental 
illnesses typically relies on symptom-based 
assessments and self-report evaluations, following the 
criteria outlined in the Diagnostic and Statistical 
Manual of Mental Disorders, Fifth Edition (DSM-5) and 
the International Statistical Classification of Diseases 
and Health Problems, Tenth Revision (ICD-10) 
(Diagnostic and Statistical Manual of Mental Disorders, 
n.d.; ICD-11 for Mortality and Morbidity Statistics, 
n.d.). However, diagnosing bipolar disorder, major 
depressive disorder, and schizophrenia poses 
significant challenges due to subjectivity and 
overlapping symptoms (Crespi & Badcock, 2008). 
Laursen et al. (2009) have indicated that individuals 
with bipolar disorder may experience depressive 
episodes similar to those with major depressive 
disorder, while schizophrenia can sometimes be 
mistaken for other psychotic disorders (Tm et al., 
2009). Alarmingly, a high rate of misdiagnosis has been 
reported, with 60% of individuals with bipolar disorder 
mistakenly receiving a diagnosis of schizophrenia, 
56.25% of those with schizophrenia being 
misdiagnosed as having bipolar disorder, and 54.17% of 
those with major depressive disorder being incorrectly 
identified as having schizophrenia (Tm et al., 2009). 
Also, people with bipolar disorder were frequently 
given the wrong first diagnosis of schizophrenia or 
depression, instead caused an average of 6.46 years 
delay in accurate diagnosis (Ayano et al., 2021). This 
often led to severe consequences, including 
inadequate and delayed treatment plans, worsening 
symptoms, social and occupational difficulties of 
patients, and even suicidal ideation (Lublóy et al., 
2020). These limitations underscore the need for more 
objective and quantitative diagnostic methods to 
improve diagnostic accuracy and minimize 
misdiagnosis rates of these disorders. 
 
In this regard, the incorporation of quantitative tools, 
such as artificial intelligence (AI), into computer-aided 
diagnosis (CAD) systems holds promise in assisting 
clinicians with mental disorder diagnosis. One such tool 
is electroencephalography (EEG), a non-invasive and 
reliable method for measuring the brain’s electrical 
activity (Nur et al., 2022; Derrick et al., 2019). By 
analysing these signals, we can provide real-time 
insights into patients’ brain functioning, which is 
particularly helpful in cases with overlapping 
symptoms (Krishnan et al., 2020; Shah et al., 2023; Y. 

Lei et al., 2022). Currently, quantitative EEG (QEEG) has 
been used to detect clear signal abnormalities in 
diagnosing neurological disorders like seizures or 
epilepsy (Acharya et al., 2013; Binder & Haut, 2013). 
Following The American Clinical Neurophysiology 
Society (ACNS) and The American Academy of 
Neurology (AAN), QEEG can be used for epilepsy,  
encephalopathy, several neurodegenerative and 
neurodevelopmental diseases such as dementia, 
attention deficit hyperactivity disorder (ADHD), etc. 
(Kopanska et al., 2022; Turner, 2021).  Since mental 
disorders like bipolar disorder, major depressive 
disorder, and schizophrenia also result from neuronal 
circuitry changes (Alamian et al., 2017; Benes, 2000). 
Diagnosing these disorders based on EEG assessments 
could provide a more objective and quantitative 
diagnostic method, one that does not rely on self-
reporting. QEEG has also been proven to have evidence 
of abnormality patterns in functional connections of 
mental disorders such as depression (Popa et al., 2020; 
Kusuma et al., 2024), anxiety disorder (Kopanska et al., 
2022). Furthermore, the integration of AI within CAD 
systems can improve diagnostic accuracy by analyzing 
quantitative EEG signals and considering existing 
diagnoses to identify subtle patterns that humans 
might miss (Acharya et al., 2015; Hébert et al., 2020; 
Mahato & Paul, 2019; Vellante et al., 2020).  
 
Several studies have employed machine learning 
techniques to classify bipolar disorder, major 
depressive disorder, and schizophrenia and achieved 
promising results. Alimardani et al. (2018) introduced 
an approach that combines statistical measures and 
the K-nearest neighbours algorithm, achieving an 
accuracy of up to 91.30% in classifying bipolar disorder 
and schizophrenia. Luján et al. (2022) proposed a 
method based on a fuzzy-means algorithm and a radial 
basis function neural network that attained an 
accuracy rate of 96.78% in classification. Concurrently, 
Sanchez et al. (2022) and L. Lei et al. (2022) focused on 
classifying major depressive disorder and bipolar 
disorder, achieving accuracies of 84.90% and 96.88%, 
respectively, in their classification models. However, 
despite these efforts in binary classifications, a gap 
remains, with limited studies focusing on the 
simultaneous multi-class classification of these 
disorders.  
 
In this study, we aimed to develop a multi-class 
classification approach based on EEG signals to 
diagnose bipolar disorder, major depressive disorder, 
and schizophrenia. We employed neural networks (NN) 
and a range of machine learning algorithms, including 
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K-Nearest Neighbor (KNN), Logistic Regression, 
Random Forest, and Gradient Boosting to perform the 
classification tasks. This comprehensive approach 
promises to improve the accurate diagnosis of these 
complex mental disorders. 
 
2.0  MATERIALS AND METHODS 
2.1  Dataset description 
The retrospective data were collected from the Seoul 
Metropolitan Government-Seoul National University 
(SMG-SNU) Boramae Medical Center in South Korea 
between 2011 and 2018 (Park et al., 2021). This dataset 

included resting-state QEEG, medical records, and 
personal information, such as age, sex, education, and 
intelligence quotient (IQ; Table 1). Qualified 
psychiatrists made the diagnoses based on the DSM-5 
criteria, and comprehensive psychological assessments 
were carried out using the Mini-International 
Neuropsychiatric Interview. This study focused on the 
analysis of 383 subjects from the dataset, categorizing 
them into three distinct groups: bipolar disorder 
(n=67), major depressive disorder (n=199), and 
schizophrenia (n=117). We aimed to conduct a multi-
class classification study to classify these three groups.  
 

 
Table 1. The metadata of participants, including the number of participants, age, sex, education, and IQ. 

Specific disorder Age Sex Education IQ 

Bipolar disorder 
(n=67) 29.71 ± 11.01 Male: 42 (62.7%) 

Female: 25 (37.3%) 14.11 ± 2.21 89.62 ± 17.51 

Major depressive 
disorder   
(n=199) 

31.26 ± 13.23 Male: 109 (54.8%) 
Female: 90 (45.2%) 13.05 ± 2.51 101.85 ± 15.28 

Schizophrenia  
(n=117) 31.73 ± 12.10 Male: 65 (55.6%) 

Female: 52 (44.4%) 12.84 ± 2.95 100.81 ± 16.98 

 
 

 
Figure 1. The flowchart of two approaches used in this study. 

 
 
The EEG recordings were obtained during 5 minutes of 
eye-closed resting state from patients using a 19-
channel setup, including electrodes placed at FP1, FP2, 
F7, F3, Fz, F4, F8, T7, C3, C4, T8, P7, P3, P4, P8, O1, and 
O2. To ensure signal quality, a ground channel was 
positioned between the FPz and Fz electrodes. In 
addition to the metadata (Table 1) and QEEG signals, 
the dataset comprised power spectrum density (PSD) 
with 19 features and functional connectivity (FC) at 

different frequency bands with 171 features. PSD 
represents the absolute power values of the EEG signal,  
reflecting spectral power at the sensor level, while FC 
characterizes the temporal correlations of 
neurophysiological events across spatially distant 
regions, indicated by coherence values between two 
signals based on phase consistency. In total, the study 
involved the analysis of 1,144 computed features, 
which include 190 features derived from the 
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combination of PSD and FC QEEG parameters at each 
of the six frequency bands (delta, theta, alpha, beta, 
high beta, and gamma). 
 
2.2  EEG-based mental disorder detection pipelines  
Our proposed system comprised two main approaches 
(Figure 1). The first one employed two designated 
neural networks for classification, referred to as neural 
network 1 (NN1) and neural network 2 (NN2). Prior to 
this, pre-processing of input data was conducted to 
address data imbalance using Synthetic Minority Over-
sampling Technique (SMOTE) and feature scaling 
techniques.  
 
The second approach constituted a machine learning-
based pipeline, which primarily involved a sequence of 
stages – SMOTE, feature scaling, feature selection, and 
feature extraction – to mitigate the presence of 
irrelevant features. Subsequently, classification was 
executed using a diverse set of algorithms, including K-
Nearest Neighbor, Random Forest, Linear Regression, 
and Gradient Boosting.  
 
2.2.1  Pre-processing data 
The analyzed dataset showed an unequal distribution 
of its classes, with 67 samples for bipolar disorder, 199 
for depression, and 117 for schizophrenia. This class 
imbalance posed a significant challenge in classification 
tasks, particularly when the minority class held greater 
importance and significance for the analysis (L. Lei et 
al., 2022), as exemplified by bipolar disorder in our 
context. To address this, we used the SMOTE technique 
(Figure 2). Unlike traditional oversampling techniques 
that simply replicate existing data, SMOTE 
systematically identifies the spatial coordinates of 
minority class data points within the feature space and 
subsequently generates synthetic samples that 
interpolate between neighboring data points (Park et 
al., 2021). Hence, SMOTE effectively supplements the 
minority class to rectify the data imbalance.  
 
 

 
Figure 2. The Synthetic Minority Over-sampling Technique 
(SMOTE) synthesizing new data points for the minority class. 
 
In addition, feature scaling ensured uniform scaling 
across all features by enhancing optimal algorithm 

performance and minimizing the impact of variable 
magnitudes on the results.  
 
2.2.2  Mental disorder classification using neural 
network  
A neural network is a set of mapping functions 
designed to recognize underlying data relationships by 
mimicking the function of the human brain (Elrahman 
& Abraham, 2013). It consists of node layers, including 
an input layer, one or more hidden layers, and an 
output layer, with each node or neuron 
interconnecting and having its weight and bias. Node 
activation occurs when the output surpasses a 
predefined threshold, enabling the transfer of data to 
the subsequent layer. In this context, neural networks 
excel at capturing intricate data relationships related to 
conditions that exhibit diverse manifestations across 
individuals, such as bipolar disorder, major depressive 
disorder and schizophrenia.  
 
In NN1, the neural network architecture included an 
input layer, a flattening layer, two dropouts, one 
hidden, and an output layer (Figure 3). The hidden 
layers consisted of 10 units and Re-Lu activation. 
Moreover, NN1 features two dropout layers, each set 
with a rate of 0.2 before and after the hidden layer. To 
facilitate three-class classification tasks, the output 
layer incorporated three units and used the Soft-max 
function.  
 
 

 
Figure 3. The Neural Network 1 architecture. 
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To compare its effectiveness with NN1 in classification, 
NN2 was designed with a deeper architecture 
incorporating more hidden and dropout layers (Figure 
4). Specifically, NN2 comprised two hidden layers, each 
featuring 18 units with Re-Lu activation, and three 
dropout layers with rates of 0.1, 0.2, and 0.2, 
respectively. Similar to NN1, the output layer of NN2 
used the Soft-max function to ensure uniformity in its 
three-class classification approach.  
 
 

 
Figure 4. The Neural Network 2 architecture. 

 

2.2.3  Mental disorder classification using machine 
learning  
Feature extraction and feature selection  
Feature extraction generates new features and 
representations from the original dataset while 
retaining essential information (Chawla et al., 2002). 
This process is particularly crucial when dealing with 
datasets characterized by numerous features, some of 
which may be redundant or noisy. Feature extraction 
enhances model performance, reduces computation 
time, and aids in uncovering relevant patterns. In this 
study, we used Principal Component Analysis (PCA), 
Independent Component Analysis (ICA), and Locally 
Linear Embedding (LLE) as key techniques for feature 
extraction. 
 
Complementing feature extraction, feature selection 
improves accuracy in classifying mental health 
conditions by strategically choosing a subset of 
relevant features. This targeted selection reduces 
dimensionality, enhances model interpretability and 
mitigates the risk of overfitting (Uhrig, 1995). Variance 
Threshold (VT) and ANOVA F-value were employed as 
feature selection techniques in this study.  
 
Machine learning models for mental disorder 
classifications 
We investigated the performance of several machine 
learning algorithms, including K-nearest neighbours 
(KNN), Random Forest (RF), Gradient Boosting (GB), 
and Logistic Regression (LR). In detail, KNN classifies 
data points based on the majority vote of its closest 
neighbors in the training data, which offers 
interpretable results due to clear decision boundaries 
(Peterson, 2009). Random Forest, on the other hand, 
leverages an ensemble of decision trees, each making 
individual classifications (Biau & Scornet, 2016). The 
final prediction of Random Forest algorithm is chosen 
by a majority vote to reduce the risk of overfitting. 
Gradient Boosting builds a more accurate model 
sequentially by focusing each new decision tree on 
correcting errors from previous one (Natekin & Knoll, 
2013). Finally, Logistic Regression, though typically 
used for binary classification, can be adapted to multi-
class problems through approaches like One-vs-Rest 
and Multinomial Logistic Regression (Boateng & Abaye, 
2019). One-vs-Rest trains separate classifiers for each 
class versus all others, while Multinomial directly 
models probabilities for all classes simultaneously.  
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3.0  RESULTS 
3.1  Results of neural network pipelines 
Our model achieved its optimal performance using the 
hyper-parameter configurations listed in Table 2. 
Despite showing slightly lower precision for bipolar 
disorder and major depressive disorder classes  
 

compared to NN1, NN2 showed superior overall 
accuracy and recall rates. The effectiveness of NN2 was 
assessed via various metrics, including confusion 
matrix, receiver operating characteristic (ROC) curve, 
accuracy and loss (Figure 5).  
 
 

Table 2. Results and hyper-parameters of the NN1 and the NN2. 
 Neural Network 1 Neural Network 2 

Precision (%) Recall (%) F1 score Precision (%) Recall (%) F1 score 
Bipolar disorder 88.89 100.0 94.12 83.33 86.75 81.51 
Major depressive disorder 100.0 40.00 68.70 100.0 50.00 67.80 
Schizophrenia 67.80 80.00 77.35 83.33 86.75 81.51 
Macro average 85.86 80.00 77.35 83.33 86.75 81.51 
Accuracy 80.00 83.33 
Hyper-parameter Epochs = 150 

Batch size = 256 
Optimizer = Adam 
Learning rate = 0.1 

Epochs = 300 
Batch size = 256 
Optimizer = SGD 
Learning rate = 0.1 

 
 

 
Figure 5. (a) Confusion matrix, (b) ROC, (c) accuracy, and (d) loss of the NN2. 
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3.2  Results of machine learning pipelines 
Dimensionality reduction techniques significantly 
improved classifier performance, except for the KNN 
approach, which still exhibited low accuracy compared 
to the others (Figure 6). When fine-tuning and 
dimensionality reduction were combined, all classifiers 
obtained accuracy levels exceeding 70%. Performance 
evaluation metrics, such as the confusion matrix and 
ROC curves, were also employed. The performances of 
all machine learning pipelines were summarized in 
Table 3.  
 
Among the classifiers, Gradient Boosting and Random 
Forest pipelines consistently outperformed others  
 

across all evaluation criteria (Figure 6). Specifically, the 
accuracy of ICA – VT – RT, ICA – ANOVA F value – RT, 
ICA – VT – GB, and ICA – ANOVA F value – GB were 
90.83%, 92.50%, 95.00%, and 96.67%, respectively. The 
misdiagnosis rate between these four pipelines were 
slightly different (Figure 7 – 10). 
 
Remarkably, the ICA – ANOVA F value – GB pipeline 
showed the highest performance across all metrics, 
with an accuracy of 96.67%, a precision of 96.86%, F1 
score of 96.63% and a recall of 96.67% (Figure 10). This 
pipeline also had the lowest mislabeling in the 
confusion matrix, with only three major depressive 
disorder patients misdiagnosed as schizophrenia.   
 

Table 3. Machine learning models without and with dimensional reduction. 
 

Feature Extraction Feature Selection Model Accuracy 
(%) F1 score Precision 

(%) 
Recall  
(%) 

Non-
dimensional 

reduction 

- - LR 64.17 57.68 68.65 62.17 

- - KNN 58.33 55.09 59.34 58.33 

- - RF 80.00 78.55 81.11 78.33 

- - GB 76.47 76.47 81.17 78.33 

Dimensional 
reduction 

LLE VT KNN 78.33 72.13 82.73 76.67 

PCA ANOVA F value LR 76.67 74.74 83.94 78.33 

ICA VT RF 90.83 90.89 92.81 90.83 

ICA ANOVA F value RF 92.50 92.45 93.37 92.50 

ICA VT GB 95.00 95.03 95.65 95.00 

ICA ANOVA F value GB 96.67 96.63 96.86 96.67 

 
 

 
 

Figure 6. The comparison between different performance pipelines without and with dimensional reduction. 
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4.0  DISCUSSION 
In this study, we address the global challenge of 
accurately diagnosing mental health disorders, 
particularly bipolar disorder, major depressive 
disorder, and schizophrenia. Traditional methods often 
lead to misdiagnosis due to subjectivity and symptom 
overlap, resulting in inadequate treatment and severe 
consequences. To improve diagnostic accuracy and aim 
to have a subjective and quantitative diagnostic aiding 
tool, we implemented a novel approach that 
incorporates EEG data and AI within a multi-
classification framework.  
 
 
 

Our findings highlighted that the performance of the 
ICA – ANOVA F value – GB pipeline achieved the 
remarkable accuracy rate of 96.67% in classifying 
bipolar disorder, major depressive disorder, and 
schizophrenia. In a prior study using the same dataset, 
Park et al. (2021) focused on binary classification, 
distinguishing each condition (bipolar disorder, major 
depressive disorder, and schizophrenia) from healthy 
controls. However, their accuracies were lower than 
our multi-class classification approach, with results of 
92.13% for bipolar disorder, 87.92% for major 
depressive disorder, and 93.83% for schizophrenia 
(Table 4).

 
Figure 7. (a) Confusion matrix and (b) ROC of the ICA – VT– RF pipeline. 

 
 

 
Figure 8. (a) Confusion matrix and (b) ROC of the ICA – ANOVA – RF pipeline. 
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Figure 9. (a) Confusion matrix and (b) ROC of the ICA – VT – GB pipeline. 

 
 

 
Figure 10. (a) Confusion matrix and (b) ROC of the ICA – ANOVA – GB pipeline. 

 
 
Table 4. The comparison between Park et al. (2021) study and this study using the same dataset. 

 Classification Area under 
curve (AUC) 

Recall 
(%) 

Precision 
(%) 

Accuracy 
(%) 

Park et al. 
(2021) 

Major depressive disorder vs. Healthy control 83.26 68.32 94.89 87.92 

Bipolar disorder vs. Healthy control 88.30 92.62 79.22 92.13 

Schizophrenia vs. Healthy control 87.08 85.11 85.30 93.83 

This study 
Major depressive disorder  
vs. Bipolar disorder  
vs. Schizophrenia 

97.00 96.67 96.86 96.67 

 
Previous studies also mainly used binary classification, 
which aimed to classify bipolar disorder from 
schizophrenia or major depressive disorder. For 
instance, Alimardani et al. (2018) conducted a study 

involving 27 patients diagnosed with bipolar disorder 
and 26 those with schizophrenia. They employed 
statistical features for feature selection and machine 
learning classifiers, resulting in an accuracy of 91.30%. 
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Likewise, Luján et al. (2022) carried out a study using 
feature extraction and machine learning classifier with 
a larger sample size of 105 individuals with bipolar 
disorder and 302 with schizophrenia, yielding a higher 
accuracy of 96.78%. Regarding the classification 
between bipolar disorder and major depressive 
disorder, Sanchez et al. (2022), L. Lei et al. (2022) and 
Zhao et al. (2023) reported accuracies of 84.90%, 
96.88%, and 83.16% respectively for their studies. 
However, these approaches fell short in capturing the 
complexity of simultaneously distinguishing between 
multiple psychiatric disorders, especially when dealing 
with highly overlapping conditions, such as bipolar 
disorder, major depressive disorder, and 
schizophrenia. 
  
In this context, the multi-class classification approach 
offers a more comprehensive understanding of these 
complex psychiatric disorders. In 2016, El Gohary et al. 
employed the multi-class classification approach and 
successfully classified 80 cases of bipolar disorder, 80 
of schizophrenia, and 70 healthy controls, with an 
accuracy of up to 98.00% (El Gohary et al., 2016). 
Significantly, Khodayari-Rostamabad et al. (2010) 
conducted both binary and multi-class classifications to 
classify 12 cases of bipolar disorder, 64 of depressive 
disorder, 40 of schizophrenia, and 91 healthy controls. 
Their results showed accuracies of 92.70% for bipolar 
disorder versus depressive disorder, 88.30% for 
depressive disorder versus schizophrenia, and 87.10% 
for depressive disorder, schizophrenia, and healthy 
controls. When compared to the aforementioned 
studies, our research achieved a higher accuracy of 
96.67% using the multi-class classification approach for 
bipolar disorder, major depressive disorder, and 
schizophrenia, coupled with a larger sample size. This 
expanded dataset capacity contributes to better 
generalization and a reduction in prediction errors. In 
addition, a combination of feature extraction, feature 
selection and imbalance handling prior to machine 
learning models for classification enhance our overall 
results.  
 
However, our findings (Figure 6) illustrate that even 
within multi-class classification, variations in pipeline 
design can influence results. Specifically, the choice of 
feature extraction and feature selection techniques can 
significantly impact the data used to train the model. 
While ICA – VT captures overall variability in the data 
to highlight broader patterns, ICA – ANOVA F value 
focuses on features that show statistically significant 
differences between the three disorder groups. The 
latter could lead to features that are more 

discriminative but potentially miss some of the broader 
variability. Meanwhile, RF is less reliant on feature 
selection as it can handle a wider range of features, 
whereas GB might benefit more from feature selection 
as it prioritizes the most informative ones. In our case, 
the ICA – ANOVA F value – GB pipeline outperformed 
others, likely by identifying the most informative 
features and effectively combining them to classify 
bipolar disorder, major depressive disorder, and 
schizophrenia accurately. 
 
While psychiatric disorders are prevalent across 
diverse cultures and societies, there exists a significant 
diversity in terms of the age, intensity, and nature of 
the presenting symptoms. These variations are 
influenced by many socioeconomic and cultural 
factors, which are particularly relevant to specific 
countries. It is worth noting that many of the existing 
datasets were derived from European sources, with 
only a few exceptions like the studies conducted by 
Alimardani et al., (2018) and L. Lei et al. (2022), which 
featured relatively limited data from Asian sources. In 
this regard, our study, replying on the data collected in 
Korea, is better suited for Asian countries. By utilizing 
this dataset, our research provides a more relevant 
perspective of psychiatric disorders in the Asian 
context.  
 
Nevertheless, our study encountered several 
limitations. The dataset, while extensive, contains a 
relatively small number of cases for each class that 
potentially hinders the effective learning and 
performance of machine learning algorithms. 
Furthermore, the dataset’s highly unbalanced 
distribution leads to skewness which we attempted to 
address with SMOTE. However, this method 
sometimes resulted in the over-generation of synthetic 
samples in certain classes as it may affect the overall 
model performance and introduce potential issues of 
noise and bias. Therefore, for generalization, it is 
necessary to verify the results with additional real 
samples that address imbalance issues. In the future, 
we are planning to collect more data to verify the 
algorithm in the clinical practice in Vietnam. A bigger 
dataset with age stratification should be considered for 
future study to obtain a more accurate CAD. If there is 
enough data for both young subjects and elders, the 
algorithms will not be biased by the age, even with 
elderly, who are at higher risk of mental disorders.  
 
5.0  CONCLUSIONS 
In summary, our study proves that machine learning 
and neural network techniques using EEG can 
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effectively classify bipolar disorder, major depressive 
disorder, and schizophrenia in a multinomial 
classification, which induces that an objective and 
quantitative diagnostic support tool is feasible in 
detecting mental disorder using EEG signals. One of the 
proposed pipelines, ICA – ANOVA F value – GB, showed 
the best results obtained with accuracy, recall, 
precision, and F1 score better than 96.60% overall. This 
approach demonstrates the potential of the multi-class 
classification as a promising complementary tool in 
clinical contexts for diagnosing individuals with mental 
illnesses. 
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