Transcriptomic profiling of skeletal muscle from the Ts1Cje mouse model of Down syndrome suggests dysregulation of trisomic genes associated with neuromuscular junction signaling, oxidative stress and chronic inflammation

Authors

  • Melody Pui Yee Leong Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Usman Bala Department of Human Anatomy Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Chai Ling Lim Department of Human Anatomy Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Rozita Rosli Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Pike-See Cheah Department of Human Anatomy Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • King Hwa Ling Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia.

DOI:

https://doi.org/10.31117/neuroscirn.v1i1.12

Keywords:

soleus, extensor digitorum longus, skeletal muscle, microarray, Down syndrome

Abstract

Ts1Cje is a mouse model of Down syndrome (DS) with partial triplication of chromosome 16, which encompasses a high number of human chromosome 21 (HSA21) orthologous genes. The mouse model exhibits muscle weakness resembling hypotonia in DS individuals. The effect of extra gene dosages on muscle weakness or hypotonia in Ts1Cje and DS individuals remains unknown. To identify molecular dysregulation of the skeletal muscle, we compared the transcriptomic signatures of soleus and extensor digitorum longus (EDL) muscles between the adult Ts1Cje and disomic littermates. A total of 166 and 262 differentially expressed protein-coding genes (DEGs) were identified in the soleus and EDL muscles, respectively. The partial trisomy of MMU16 in Ts1Cje mice has a greater effect on gene expression in EDL. Top-down clustering analysis of all DEGs for represented functional ontologies revealed 5 functional clusters in soleus associated with signal transduction, development of reproductive system, nucleic acid biosynthesis, protein modification and metabolism as well as regulation of gene expression. On the other hand, only 3 functional clusters were observed for EDL namely neuron and cell development, protein modification and metabolic processes as well as ion transport. A total of 11 selected DEGs were validated using qPCR (disomic DEGs: Mansc1; trisomic DEGs: Itsn1, Rcan1, Synj1, Donson, Dyrk1a, Ifnar1, Ifnar2, Runx1, Sod1 and Tmem50b). The validated DEGs were implicated in neuromuscular junction signalling (Itsn1, Syn1), oxidative stress (Sod1, Runx1) and chronic inflammation processes (Runx1, Rcan1, Ifnar1, Ifnar2). Other validated DEGs have not been well-documented as involved in the skeletal muscle development or function, thus serve as interesting novel candidates for future investigations. To our knowledge, the study was the first attempt to determine the transcriptomic profiles of both soleus and EDL muscles in Ts1Cje mice. It provides new insights on the possible disrupted molecular pathways associated with hypotonia in DS individuals.

References

Altafaj X, Dierssen M, Baamonde C, Martí E, Visa J, Guimerà J, et al. Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome. Hum Mol Genet. 2001;10(18):1915–1923. https://www.ncbi.nlm.nih.gov/pubmed/11555628

Amano K, Sago H, Uchikawa C, Suzuki T, Kotliarova SE, Nukina N, et al. Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Hum Mol Genet. 2004;13(13):1333–1340. https://doi.org/10.1093/hmg/ddh154

Amano K, Sago H, Uchikawa C, Suzuki T, Kotliarova SE, Nukina N, et al. Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Hum Mol Genet. 2004;13(13):1333–1340. https://doi.org/10.1093/hmg/ddh154

Anderson JS, Nielsen JA, Ferguson MA, Burback MC, Cox ET, Dai L, et al. Abnormal brain synchrony in Down Syndrome. Neuroimage Clin. 2013;2:703–715. https://doi.org/10.1016/j.nicl.2013.05.006

Anson JG. Chapter 13 Neuromotor Control and Down Syndrome. In: Approaches to the Study of Motor Control and Learning. Elsevier; 1992. pp. 387–412. (Advances in Psychology; vol. 84). https://doi.org/10.1016/S0166-4115(08)61693-3

Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat Rev Genet. 2004;5(10):725–738. https://doi.org/10.1038/nrg1448

Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–1069. https://doi.org/10.1084/jem.20070075

Aylward EH, Habbak R, Warren AC, Pulsifer MB, Barta PE, Jerram M, et al. Cerebellar volume in adults with Down syndrome. Arch Neurol. 1997;54(2):209–212. https://doi.org/10.1001/archneur.1997.00550140077016

Baek K-H, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ, et al. Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature. 2009;459(7250):1126–1130. https://doi.org/10.1038/nature08062

Bareja A, Holt JA, Luo G, Chang C, Lin J, Hinken AC, et al. Human and mouse skeletal muscle stem cells: convergent and divergent mechanisms of myogenesis. Alway SE, editor. PLoS ONE. 2014;9(2):e90398. https://doi.org/10.1371/journal.pone.0090398

Belichenko NP, Belichenko PV, Kleschevnikov AM, Salehi A, Reeves RH, Mobley WC. The “Down Syndrome Critical Region” Is Sufficient in the Mouse Model to Confer Behavioral, Neurophysiological, and Synaptic Phenotypes Characteristic of Down Syndrome. J Neurosci. 2009;29(18):5938–5948. https://doi.org/10.1523/JNEUROSCI.1547-09.2009

Belichenko PV, Kleschevnikov AM, Salehi A, Epstein CJ, Mobley WC. Synaptic and cognitive abnormalities in mouse models of Down syndrome: exploring genotype-phenotype relationships. J Comp Neurol. 2007;504(4):329–345. https://doi.org/10.1002/cne.21433

Biggs JR, Peterson LF, Zhang Y, Kraft AS, Zhang D-E. AML1/RUNX1 phosphorylation by cyclin-dependent kinases regulates the degradation of AML1/RUNX1 by the anaphase-promoting complex. Mol Cell Biol. 2006;26(20):7420–7429. https://doi.org/10.1128/MCB.00597-06

Bondesen BA, Mills ST, Kegley KM, Pavlath GK. The COX-2 pathway is essential during early stages of skeletal muscle regeneration. Am J Physiol Cell Physiol. 2004;287(2):C475–483. https://doi.org/10.1152/ajpcell.00088.2004

Brown R, Taylor J, Matthews B. Quality of life--ageing and Down syndrome. Downs Syndr Res Pract. 2001;6(3):111–116. https://doi.org/10.3104/case-studies.101

Bryer SC, Fantuzzi G, van Rooijen N, Koh TJ. Urokinase-type plasminogen activator plays essential roles in macrophage chemotaxis and skeletal muscle regeneration. J Immunol. 2008;180(2):1179–1188. https://doi.org/10.4049/jimmunol.180.2.1179

Chang KT, Min K-T. Upregulation of three Drosophila homologs of human chromosome 21 genes alters synaptic function: implications for Down syndrome. Proc Natl Acad Sci USA. 2009;106(40):17117–17122. https://doi.org/10.1073/pnas.0904397106

Chávez CJ, Ortega P, D’Escrivan A, Miranda LE, Leal M JY, Delgado C. Body mass index changes and lipid peroxidation in adults with Down's syndrome. Int Med Rev Down Syndr. 2012;16(2):19–25. https://doi.org/10.1016/S2171-9748(12)70021-1

Cioni M, Cocilovo A, Di Pasquale F, Araujo MB, Siqueira CR, Bianco M. Strength deficit of knee extensor muscles of individuals with Down syndrome from childhood to adolescence. Am J Ment Retard. 1994;99(2):166–174. https://www.ncbi.nlm.nih.gov/pubmed/7803033

Costa AC, Walsh K, Davisson MT. Motor dysfunction in a mouse model for Down syndrome. Physiol Behav. 1999;68(1-2):211–220. https://doi.org/10.1016/S0031-9384(99)00178-X

Cowley PM, Keslacy S, Middleton FA, DeRuisseau LR, Fernhall B, Kanaley JA, et al. Functional and biochemical characterization of soleus muscle in Down syndrome mice: insight into the muscle dysfunction seen in the human condition. Am J Physiol Regul Integr Comp Physiol. 2012;303(12):R1251–1260. https://doi.org/10.1152/ajpregu.00312.2012

Cowley PM. Skeletal Muscle Function, Morphology, and Biochemistry in Ts65Dn Mice: A Model of Down Syndrome. Exercise Science - Doctoral Dissertations. Syracuse University. December 2011. https://surface.syr.edu/ppe_etd/5.

Cremona O, Di Paolo G, Wenk MR, Lüthi A, Kim WT, Takei K, et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell. 1999;99(2):179–188. https://doi.org/10.1016/S0092-8674(00)81649-9

Cunningham C. Families of children with Down syndrome. Downs Syndr Res Pract. 1996;4(3):87–95. https://doi.org/10.3104/perspectives.66

Davisson MT, Schmidt C, Akeson EC. Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome. Prog Clin Biol Res. 1990;360:263–280. https://www.ncbi.nlm.nih.gov/pubmed/2147289

Doles JD, Olwin BB. The impact of JAK-STAT signaling on muscle regeneration. Nat Med. 2014;20(10):1094–1095. https://doi.org/10.1038/nm.3720

Drouet V, Lesage S. Synaptojanin 1 mutation in Parkinson's disease brings further insight into the neuropathological mechanisms. BioMed Res Int. 2014;2014(48):289728–289729. https://doi.org/10.1155/2014/289728

Duchon A, Raveau M, Chevalier C, Nalesso V, Sharp AJ, Herault Y. Identification of the translocation breakpoints in the Ts65Dn and Ts1Cje mouse lines: relevance for modeling Down syndrome. Mamm Genome. 2011;22(11-12):674–684. https://doi.org/10.1007/s00335-011-9356-0

Edwards H, Xie C, LaFiura KM, Dombkowski AA, Buck SA, Boerner JL, et al. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia. Blood. 2009;114(13):2744–2752. https://doi.org/10.1182/blood-2008-09-179812

Epstein CJ, Korenberg JR, Annerén G, Antonarakis SE, Aymé S, Courchesne E, et al. Protocols to establish genotype-phenotype correlations in Down syndrome. Am J Hum Genet. 1991;49(1):207–235. https://www.ncbi.nlm.nih.gov/pubmed/1829580

Galante M, Jani H, Vanes L, Daniel H, Fisher EMC, Tybulewicz VLJ, et al. Impairments in motor coordination without major changes in cerebellar plasticity in the Tc1 mouse model of Down syndrome. Hum Mol Genet. 2009;18(8):1449–1463. https://doi.org/10.1093/hmg/ddp055

Gardiner K. Gene-dosage effects in Down syndrome and trisomic mouse models. Genome Biol. 2004;5(10):244. https://doi.org/10.1186/gb-2004-5-10-244

Gelderblom M, Eminel S, Herdegen T, Waetzig V. c-Jun N-terminal kinases (JNKs) and the cytoskeleton--functions beyond neurodegeneration. Int J Dev Neurosci. 2004;22(7):559–564. https://doi.org/10.1016/j.ijdevneu.2004.07.014

Guidi S, Bonasoni P, Ceccarelli C, Santini D, Gualtieri F, Ciani E, et al. Neurogenesis impairment and increased cell death reduce total neuron number in the hippocampal region of fetuses with Down syndrome. Brain Pathol. 2008;18(2):180–197. https://doi.org/10.1111/j.1750-3639.2007.00113.x

Guidi S, Ciani E, Bonasoni P, Santini D, Bartesaghi R. Widespread proliferation impairment and hypocellularity in the cerebellum of fetuses with down syndrome. Brain Pathol. 2011;21(4):361–373. https://doi.org/10.1111/j.1750-3639.2010.00459.x

Harris TW, Hartwieg E, Horvitz HR, Jorgensen EM. Mutations in synaptojanin disrupt synaptic vesicle recycling. J Cell Biol. 2000;150(3):589–600. https://doi.org/10.1083/jcb.150.3.589

Haydar TF, Reeves RH. Trisomy 21 and early brain development. Trends Neurosci. 2012;35(2):81–91. https://doi.org/10.1016/j.tins.2011.11.001

Henderson SE, Morris J, Frith U. The motor deficit in Down's syndrome children: A problem of timing? J Child Psychol Psychiatry. 1981;22(3):233–245. https://doi.org/10.1111/j.1469-7610.1981.tb00549.x

Hewitt CA, Ling KH, Merson TD, Simpson KM, Ritchie ME, King SL, et al. Gene network disruptions and neurogenesis defects in the adult Ts1Cje mouse model of Down syndrome. Aziz SA, editor. PLoS ONE. 2010;5(7):e11561. https://doi.org/10.1371/journal.pone.0011561

Horvat M, Croce R, Pitetti KH, Fernhall B. Comparison of isokinetic peak force and work parameters in youth with and without mental retardation. Med Sci Sports Exerc. 1999;31(8):1190–1195. https://www.ncbi.nlm.nih.gov/pubmed/10449023

Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. https://doi.org/10.1093/nar/gkn923

Jover M, Ayoun C, Berton C, Carlier M. Specific grasp characteristics of children with trisomy 21. Dev Psychobiol. 2010;52(8):782–793. https://doi.org/10.1002/dev.20474

Kesslak JP, Nagata SF, Lott I, Nalcioglu O. Magnetic resonance imaging analysis of age-related changes in the brains of individuals with Down's syndrome. Neurology. 1994;44(6):1039–1039. https://doi.org/10.1212/WNL.44.6.1039

Kraemer BR, McIntyre LL, Blacher J. Quality of life for young adults with mental retardation during transition. Taylor SJ, editor. Ment Retard. 2003;41(4):250–262. https://doi.org/10.1352/0047-6765(2003)41<250:QOLFYA>2.0.CO;2

Laffaire J, Rivals I, Dauphinot L, Pasteau F, Wehrle R, Larrat B, et al. Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development. BMC Genomics. 2009;10(1):138. https://doi.org/10.1186/1471-2164-10-138

Latash ML, Almeida GL, Corcos DM. Preprogrammed reactions in individuals with Down syndrome: the effects of instruction and predictability of the perturbation. Arch Phys Med Rehabil. 1993;74(4):391–399. https://www.ncbi.nlm.nih.gov/pubmed/8466421

Lescaudron L, Peltékian E, Fontaine-Pérus J, Paulin D, Zampieri M, Garcia L, et al. Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul Disord. 1999;9(2):72–80. https://doi.org/10.1016/S0960-8966(98)00111-4

Lim CL, Bala U, Leong MP-Y, Stanslas J, Ramasamy R, Ling K-H, et al. Cellular function of satellite cells does not play a role in muscle weakness of adult Ts1Cje mice. Neurosci Res Notes. 2018;1(1):3–10. https://doi.org/10.31117/neuroscirn.v1i1.6

Ling KH, Hewitt CA, Beissbarth T, Hyde L, Banerjee K, Cheah P-S, et al. Molecular networks involved in mouse cerebral corticogenesis and spatio-temporal regulation of Sox4 and Sox11 novel antisense transcripts revealed by transcriptome profiling. Genome Biol. 2009;10(10):R104. https://doi.org/10.1186/gb-2009-10-10-r104

Ling KH, Hewitt CA, Tan K-L, Cheah P-S, Vidyadaran S, Vidyadaran S, et al. Functional transcriptome analysis of the postnatal brain of the Ts1Cje mouse model for Down syndrome reveals global disruption of interferon-related molecular networks. BMC Genomics. 2014;15(1):624. https://doi.org/10.1186/1471-2164-15-624

Liu F, Liang Z, Wegiel J, Hwang Y-W, Iqbal K, Grundke-Iqbal I, et al. Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB J. 2008;22(9):3224–3233. https://doi.org/10.1096/fj.07-104539

Lockstone HE, Harris LW, Swatton JE, Wayland MT, Holland AJ, Bahn S. Gene expression profiling in the adult Down syndrome brain. Genomics. 2007;90(6):647–660. https://doi.org/10.1016/j.ygeno.2007.08.005

Luo M-C, Zhou S-Y, Feng D-Y, Xiao J, Li W-Y, Xu C-D, et al. Runt-related Transcription Factor 1 (RUNX1) Binds to p50 in Macrophages and Enhances TLR4-triggered Inflammation and Septic Shock. J Biol Chem. 2016;291(42):22011–22020. https://doi.org/10.1074/jbc.M116.715953

Malak R, Kotwicka M, Krawczyk-Wasielewska A, Mojs E, Samborski W. Motor skills, cognitive development and balance functions of children with Down syndrome. Ann Agric Environ Med. 2013;20(4):803–806. https://www.ncbi.nlm.nih.gov/pubmed/24364457

Mercer VS, Lewis CL. Hip Abductor and Knee Extensor Muscle Strength of Children with and without Down Syndrome. Pediatr Phys Ther. 2001;13(1):18–26. https://www.ncbi.nlm.nih.gov/pubmed/17053646

Mitchell AN, Jayakumar L, Koleilat I, Qian J, Sheehan C, Bhoiwala D, et al. Brain expression of the calcineurin inhibitor RCAN1 (Adapt78). Arch Biochem Biophys. 2007;467(2):185–192. https://doi.org/10.1016/j.abb.2007.08.030

Moldrich RX. A yeast model of Down syndrome. Int J Dev Neurosci. 2007;25(8):539–543. https://doi.org/10.1016/j.ijdevneu.2007.10.001

Mon-Williams M, Tresilian JR, Bell VE, Coppard VL, Jobling A, Carson RG. The preparation of reach to grasp movements in adults with Down syndrome. Hum Mov Sci. 2001;20(4-5):587–602. https://doi.org/10.1016/S0167-9457(01)00069-0

Pennington BF, Moon J, Edgin J, Stedron J, Nadel L. The neuropsychology of Down syndrome: evidence for hippocampal dysfunction. Child Dev. 2003;74(1):75–93. https://doi.org/10.1111/1467-8624.00522

Pinter JD, Eliez S, Schmitt JE, Capone GT, Reiss AL. Neuroanatomy of Down's syndrome: a high-resolution MRI study. Am J Psychiatry. 2001;158(10):1659–1665. https://doi.org/10.1176/appi.ajp.158.10.1659

Porta S, Serra SA, Huch M, Valverde MA, Llorens F, Estivill X, et al. RCAN1 (DSCR1) increases neuronal susceptibility to oxidative stress: a potential pathogenic process in neurodegeneration. Hum Mol Genet. 2007;16(9):1039–1050. https://doi.org/10.1093/hmg/ddm049

Potier M-C, Rivals I, Mercier G, Ettwiller L, Moldrich RX, Laffaire J, et al. Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development. J Neurochem. 2006;97 Suppl 1(s1):104–109. https://doi.org/10.1111/j.1471-4159.2005.03624.x

Price FD, Maltzahn von J, Bentzinger CF, Dumont NA, Yin H, Chang NC, et al. Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat Med. 2014;20(10):1174–1181. https://doi.org/10.1038/nm.3655

Pritchard MA, Kola I. The "gene dosage effect" hypothesis versus the “amplified developmental instability” hypothesis in Down syndrome. J Neural Transm Suppl. 1999;57:293–303. https://www.ncbi.nlm.nih.gov/pubmed/10666684

Quadri M, Fang M, Picillo M, Olgiati S, Breedveld GJ, Graafland J, et al. Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum Mutat. 2013;34(9):1208–1215. https://doi.org/10.1002/humu.22373

Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C, Sisodia SS, et al. A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet. 1995;11(2):177–184. https://doi.org/10.1038/ng1095-177

Rigoldi C, Galli M, Mainardi L, Crivellini M, Albertini G. Postural control in children, teenagers and adults with Down syndrome. Res Dev Disabil. 2011;32(1):170–175. https://doi.org/10.1016/j.ridd.2010.09.007

Riquelme Agulló I, Manzanal González B. Factors influencing motor development in children with Down syndrome. Int Med Rev Down Syndr. 2006;10(2):18–24. https://doi.org/10.1016/S2171-9748(06)70063-0

Riquelme Agulló I, Manzanal González B. Motor development in children with Down syndrome and associated osteoarticular pathology. Int Med Rev Down Syndr. 2006;10(3):34–40. https://doi.org/10.1016/S2171-9748(06)70067-8

Sago H, Carlson EJ, Smith DJ, Kilbridge J, Rubin EM, Mobley WC, et al. Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc Natl Acad Sci USA. 1998;95(11):6256–6261. https://doi.org/10.1073/pnas.95.11.6256

Sago H, Carlson EJ, Smith DJ, Rubin EM, Crnic LS, Huang TT, et al. Genetic dissection of region associated with behavioral abnormalities in mouse models for Down syndrome. Pediatr Res. 2000;48(5):606–613. https://doi.org/10.1203/00006450-200011000-00009

Scappini E, Koh T-W, Martin NP, O'Bryan JP. Intersectin enhances huntingtin aggregation and neurodegeneration through activation of c-Jun-NH2-terminal kinase. Hum Mol Genet. 2007;16(15):1862–1871. https://doi.org/10.1093/hmg/ddm134

Scott W, Stevens J, Binder-Macleod SA. Human skeletal muscle fiber type classifications. Phys Ther. 2001;81(11):1810–1816. https://doi.org/10.1093/ptj/81.11.1810

Shapiro BL. Down syndrome--a disruption of homeostasis. Am J Med Genet. 1983;14(2):241–269. https://doi.org/10.1002/ajmg.1320140206

Siarey RJ, Villar AJ, Epstein CJ, Galdzicki Z. Abnormal synaptic plasticity in the Ts1Cje segmental trisomy 16 mouse model of Down syndrome. Neuropharmacology. 2005;49(1):122–128. https://doi.org/10.1016/j.neuropharm.2005.02.012

Sobrado M, Ramirez BG, Neria F, Lizasoain I, Arbones ML, Minami T, et al. Regulator of calcineurin 1 (Rcan1) has a protective role in brain ischemia/reperfusion injury. J Neuroinflammation. 2012;9(1):48. https://doi.org/10.1186/1742-2094-9-48

Tan K-L, Ling KH, Hewitt CA, Cheah P-S, Simpson K, Gordon L, et al. Transcriptional profiling of the postnatal brain of the Ts1Cje mouse model of Down syndrome. Genomics Data. 2014;2:314–317. https://doi.org/10.1016/j.gdata.2014.09.009

Umansky KB, Gruenbaum-Cohen Y, Tsoory M, Feldmesser E, Goldenberg D, Brenner O, et al. Runx1 Transcription Factor Is Required for Myoblasts Proliferation during Muscle Regeneration. Cox GA, editor. PLoS Genet. 2015;11(8):e1005457. https://doi.org/10.1371/journal.pgen.1005457

Vicari S, Bellucci S, Carlesimo GA. Visual and spatial long-term memory: differential pattern of impairments in Williams and Down syndromes. Dev Med Child Neurol. 2005;47(5):305–311. https://doi.org/10.1111/j.1469-8749.2005.tb01141.x

Vicari S. Motor development and neuropsychological patterns in persons with Down syndrome. Behav Genet. 2006;36(3):355–364. https://doi.org/10.1007/s10519-006-9057-8

Vilardell M, Rasche A, Thormann A, Maschke-Dutz E, Pérez-Jurado LA, Lehrach H, et al. Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes. BMC Genomics. 2011;12(1):229. https://doi.org/10.1186/1471-2164-12-229

Virji-Babul N, Kerns K, Zhou E, Kapur A, Shiffrar M. Perceptual-motor deficits in children with Down syndrome: implications for intervention. Downs Syndr Res Prac. 2006;10(2):74–82. htps://doi.org/10.3104/reports.308

Wang P, Wang L, Chen L, Sun X. Dual-specificity tyrosine-phosphorylation regulated kinase 1A Gene Transcription is regulated by Myocyte Enhancer Factor 2D. Sci Rep. 2017;7(1):7240. https://doi.org/10.1038/s41598-017-07655-1

Wang X, Blagden C, Fan J, Nowak SJ, Taniuchi I, Littman DR, et al. Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle. Genes Dev. 2005;19(14):1715–1722. https://doi.org/10.1101/gad.1318305

Wong KA, Wilson J, Russo A, Wang L, Okur MN, Wang X, et al. Intersectin (ITSN) family of scaffolds function as molecular hubs in protein interaction networks. Aguilar RC, editor. PLoS ONE. 2012;7(4):e36023. https://doi.org/10.1371/journal.pone.0036023

Xavier AC, Taub JW. Acute leukemia in children with Down syndrome. Haematologica. 2010;95(7):1043–1045. https://doi.org/10.3324/haematol.2010.024968

Zhou Y, Kaminski HJ, Gong B, Cheng G, Feuerman JM, Kusner L. RNA expression analysis of passive transfer myasthenia supports extraocular muscle as a unique immunological environment. Invest Ophthalmol Vis Sci. 2014;55(7):4348–4359. https://doi.org/10.1167/iovs.14-14422

Zhu X, Yeadon JE, Burden SJ. AML1 is expressed in skeletal muscle and is regulated by innervation. Mol Cell Biol. 1994;14(12):8051–8057. https://doi.org/10.1128/MCB.14.12.8051

Downloads

Published

2018-08-27

How to Cite

Leong, M. P. Y., Bala, U., Lim, C. L., Rosli, R., Cheah, P.-S. and Ling, K. H. (2018) “Transcriptomic profiling of skeletal muscle from the Ts1Cje mouse model of Down syndrome suggests dysregulation of trisomic genes associated with neuromuscular junction signaling, oxidative stress and chronic inflammation”, Neuroscience Research Notes, 1(1), pp. 21–41. doi: 10.31117/neuroscirn.v1i1.12.