COVID-19 and the central nervous system: What is the interplay?

Authors

  • Noha M Abd El-Fadeal Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
  • Sara A Anber Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
  • Hoda A Elkot Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
  • Ghada Maged Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
  • Iman A Saeed Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
  • Marwa M Negm Faculty of Clinical Pharmacy, Mansoura University, Mansoura, Egypt.
  • Menna Allah Abdelsamad Biotechnology Department, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Beni-Suef, Egypt.
  • Asmaa El-bakri Biology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
  • Wael Mohamed (1) Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia. (2) Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Menoufia, Egypt.

DOI:

https://doi.org/10.31117/neuroscirn.v5i4.155

Keywords:

COVID-19, neurodegenerative diseases, central nervous system (CNS)

Abstract

Since the outbreak of COVID-19 in 2019-2020, the highly contiguous disease caused by coronavirus 2 (SARS-CoV-2) spread worldwide in a short life span causing a disastrous effect and nearly 5.8 million deaths until February 2022. This global health crisis caused concerns about the disease's aetiology, epidemiology, and management. Understanding the virus's long- and short-term consequences on diverse human body organs and systems was one of the scientist's concerns despite the virus' respiratory system principal effect. Thus, after reporting neurological symptoms in approximately one-third of hospitalised patients with COVID-19, demonstrating how COVID-19 infects the central nervous system (CNS), causing neurodegenerative diseases in various patients and how the virus affects CNS function became quintessential. There are various mechanisms for COVID-19 pathophysiology, some implicating the potential virus invasion of the blood-brain barrier (BBB). Trans-synaptic and hematogenous routes are the main routes for the virus to pass through the barrier. Binding to the BBB endothelial cells is causing significant alterations in the permeability and integrity properties of the barrier, which cause an elevation of the incidence rate of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis among COVI-19 patients. COVID-19 patients developed neurological manifestations ranging from mild symptoms to severe diseases such as headache and loss of smell, encephalitis and CNS-mediated respiratory distress. However, encephalitis is not a common complication, and it has a significant mortality rate in severely ill patients due to the hyperactivation of the host immune response. Although more investigations are needed, severe COVID- 19 patients are considered at a high risk of neurodegenerative disorder as a long-term consequence of SARS-CoV-2 infection.

References

Abdulkadir, T., Ünlübaş, Y., Alemdar, M., & Akyüz, E. (2020). Coexistence of COVID-19 and acute ischemic stroke report of four cases. Journal of Clinical Neuroscience, 77, 227–229. https://doi.org/10.1016/j.jocn.2020.05.018

Abu-Rumeileh, S., Abdelhak, A., Foschi, M., Tumani, H., & Otto, M. (2021). Guillain–Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases. Journal of Neurology, 268(4), 1133–1170. https://doi.org/10.1007/s00415-020-10124-x

Ahmed, S. S. S. J., Paramasivam, P., Kamath, M., Sharma, A., Rome, S., & Murugesan, R. (2021). Genetic Exchange of Lung-Derived Exosome to Brain Causing Neuronal Changes on COVID-19 Infection. Molecular Neurobiology, 58(10), 5356–5368. https://doi.org/10.1007/s12035-021-02485-9

Ahorsu, D. K., Lin, C.-Y., Imani, V., Saffari, M., Griffiths, M. D., & Pakpour, A. H. (2020). The fear of COVID-19 scale: development and initial validation. International Journal of Mental Health and Addiction, 20(3), 1537–1545. https://doi.org/10.1007%2Fs11469-020-00270-8

Alomari, S. O., Abou-Mrad, Z., & Bydon, A. (2020). COVID-19 and the central nervous system. Clinical Neurology and Neurosurgery, 198, 106116.https://doi.org/10.1016/j.clineuro.2020.106116

Arneth, B., & Kraus, J. (2022). Laboratory biomarkers of Multiple Sclerosis (MS). Clinical Biochemistry, 99, 1–8. https://doi.org/10.1016/j.clinbiochem.2021.10.004

Azizi, G., Navabi, S. S., Al-Shukaili, A., Seyedzadeh, M. H., Yazdani, R., & Mirshafiey, A. (2015). The role of inflammatory mediators in the pathogenesis of Alzheimer's disease. Sultan Qaboos University Medical Journal, 15(3), e305–e316. https://doi.org/10.18295/squmj.2015.15.03.002

Baig, A. M., Khaleeq, A., Ali, U., & Syeda, H. (2020). Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chemical Neuroscience, 11(7), 995–998. https://doi.org/10.1021/acschemneuro.0c00122

Baker, D., Amor, S., Kang, A. S., Schmierer, K., & Giovannoni, G. (2020). The underpinning biology relating to multiple sclerosis disease modifying treatments during the COVID-19 pandemic. Multiple Sclerosis and Related Disorders, 43, 102174. https://doi.org/10.1016/j.msard.2020.102174

Barciszewska, A.-M. (2021). Elucidating of oxidative distress in COVID-19 and methods of its prevention. Chemico-Biological Interactions, 344, 109501. https://doi.org/10.1016/j.cbi.2021.109501

Beach, S. R., Praschan, N. C., Hogan, C., Dotson, S., Merideth, F., Kontos, N., Fricchione, G. L., & Smith, F. A. (2020). Delirium in COVID-19: a case series and exploration of potential mechanisms for central nervous system involvement. General Hospital Psychiatry, 65, 47–53. https://doi.org/10.1016/j.genhosppsych.2020.05.008

Benameur, K., Agarwal, A., Auld, S. C., Butters, M. P., Webster, A. S., Ozturk, T., Howell, J. C., Bassit, L. C., Velasquez, A., & Schinazi, R. F. (2020). Encephalopathy and encephalitis associated with cerebrospinal fluid cytokine alterations and coronavirus disease, Atlanta, Georgia, USA, 2020. Emerging Infectious Diseases, 26(9), 2016–2021. https://doi.org/10.3201/eid2609.202122

Bhidayasiri, R., Virameteekul, S., Kim, J.-M., Pal, P. K., & Chung, S.-J. (2020). COVID-19: an early review of its global impact and considerations for Parkinson's disease patient care. Journal of Movement Disorders, 13(2), 105–114. https://doi.org/10.14802/jmd.20042

Brown, E., Gray, R., lo Monaco, S., O'Donoghue, B., Nelson, B., Thompson, A., Francey, S., & McGorry, P. (2020). The potential impact of COVID-19 on psychosis: A rapid review of contemporary epidemic and pandemic research. Schizophrenia Research, 222, 9–87. https://doi.org/10.1016/j.schres.2020.05.005

Callaway, E. (2021). Heavily mutated Omicron variant puts scientists on alert. Nature, 600(7887), 21. https://doi.org/10.1038/d41586-021-03552-w

Cantuti-Castelvetri, L., Ojha, R., Pedro, L. D., Djannatian, M., Franz, J., Kuivanen, S., van der Meer, F., Kallio, K., Kaya, T., Anastasina, M., Smura, T., Levanov, L., Szirovicza, L., Tobi, A., Kallio-Kokko, H., Österlund, P., Joensuu, M., Meunier, F. A., Butcher, S. J., … Simons, M. (2020). Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 370(6518), 856–860. https://doi.org/10.1126/science.abd2985

Carod-Artal, F. J. (2020). Neurological complications of coronavirus and COVID-19. Revista de Neurologia, 70(9), 311–322. https://doi.org/10.33588/rn.7009.2020179

Chaudhury, S. S., Sinha, K., Majumder, R., Biswas, A., & das Mukhopadhyay, C. (2021). COVID-19 and central nervous system interplay: A big picture beyond clinical manifestation. Journal of Biosciences, 46(2), 47. https://doi.org/10.1007/s12038-021-00165-3

Chiesa-Estomba, C. M., Lechien, J. R., Radulesco, T., Michel, J., Sowerby, L. J., Hopkins, C., & Saussez, S. (2020). Patterns of smell recovery in 751 patients affected by the COVID-19 outbreak. European Journal of Neurology, 27(11), 2318–2321. https://doi.org/10.1111/ene.14440

Cilia, R., Bonvegna, S., Straccia, G., Andreasi, N. G., Elia, A. E., Romito, L. M., Devigili, G., Cereda, E., & Eleopra, R. (2020). Effects of COVID‐19 on Parkinson's disease clinical features: a community‐based case‐control study. Movement Disorders, 35(8), 1287–1292. https://doi.org/10.1002/mds.28170

Ciotti, M., Angeletti, S., Minieri, M., Giovannetti, M., Benvenuto, D., Pascarella, S., Sagnelli, C., Bianchi, M., Bernardini, S., & Ciccozzi, M. (2019). COVID-19 outbreak: an overview. Chemotherapy, 64(5–6), 215–223. https://doi.org/10.1159/000507423

Costello, F., & Dalakas, M. C. (2020). Cranial neuropathies and COVID-19: neurotropism and autoimmunity. Neurology, 95(5), 195–196. https://doi.org/10.1212/wnl.0000000000009921

Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N. G., & Decroly, E. (2020). The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Research, 176, 104742. https://doi.org/10.1016/j.antiviral.2020.104742

Dąbrowska, E., Galińska-Skok, B., & Waszkiewicz, N. (2021). Depressive and neurocognitive disorders in the context of the inflammatory background of COVID-19. Life, 11(10), 1056. https://doi.org/10.3390/life11101056

Dahm, T., Rudolph, H., Schwerk, C., Schroten, H., & Tenenbaum, T. (2016). Neuroinvasion and inflammation in viral central nervous system infections. Mediators of Inflammation, 2016(2016), 8562805. https://doi.org/10.1155/2016/8562805

Dalakas, M. C. (2020). Guillain-Barré syndrome: The first documented COVID-19-triggered autoimmune neurologic disease: More to come with myositis in the offing. Neurology® Neuroimmunology & Neuroinflammation, 7(5). https://doi.org/10.1212/NXI.0000000000000781

David Spence, J., de Freitas, G. R., Pettigrew, L. C., Ay, H., Liebeskind, D. S., Kase, C. S., del Brutto, O. H., Hankey, G. J., & Venketasubramanian, N. (2020). Mechanisms of Stroke in COVID-19. In Cerebrovascular Diseases (Vol. 49, Issue 4, pp. 451–458). S. Karger AG. https://doi.org/10.1159/000509581

de Sousa Moreira, J. L., Barbosa, S. M. B., Vieira, J. G., Chaves, N. C. B., Felix, E. B. G., Feitosa, P. W. G., da Cruz, I. S., da Silva, C. G. L., & Neto, M. L. R. (2021). The psychiatric and neuropsychiatric repercussions associated with severe infections of COVID-19 and other coronaviruses. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 106. https://doi.org/10.1016/j.pnpbp.2020.110159

Delanghe, J. R., Speeckaert, M. M., & de Buyzere, M. L. (2020). COVID-19 infections are also affected by human ACE1 D/I polymorphism. Clinical Chemistry and Laboratory Medicine (CCLM), 58(7), 1125–1126. https://doi.org/10.1515/cclm-2020-0425

Dewanjee, S., Vallamkondu, J., Kalra, R. S., Puvvada, N., Kandimalla, R., & Reddy, P. H. (2021). Emerging COVID-19 neurological manifestations: present outlook and potential neurological challenges in COVID-19 pandemic. Molecular Neurobiology, 58(9), 4694–4715. https://doi.org/10.1007/s12035-021-02450-6

Dinakaran, D., Manjunatha, N., Kumar, C. N., & Suresh, B. M. (2020). Neuropsychiatric aspects of COVID-19 pandemic: A selective review. Asian Journal of Psychiatry, 53, 102188. https://doi.org/10.1016/j.ajp.2020.102188

Ding, Q., Shults, N. v, Harris, B. T., & Suzuki, Y. J. (2020). Angiotensin-converting enzyme 2 (ACE2) is upregulated in Alzheimer's disease brain. BioRxiv. https://doi.org/10.1101%2F2020.10.08.331157

Dolati, S., Aghebati‐Maleki, L., Ahmadi, M., Marofi, F., Babaloo, Z., Ayramloo, H., Jafarisavari, Z., Oskouei, H., Afkham, A., & Younesi, V. (2018). Nanocurcumin restores aberrant miRNA expression profile in multiple sclerosis, randomised, double‐blind, placebo‐controlled trial. Journal of Cellular Physiology, 233(7), 5222–5230. https://doi.org/10.1002/jcp.26301

Edén, A., Kanberg, N., Gostner, J., Fuchs, D., Hagberg, L., Andersson, L. M., Lindh, M., Price, R. W., Zetterberg, H., & Gisslén, M. (2021). CSF Biomarkers in Patients With COVID-19 and Neurologic Symptoms: A Case Series. Neurology, 96(2), e294–e300. https://doi.org/10.1212/WNL.0000000000010977

Fabbri, V. P., Foschini, M. P., Lazzarotto, T., Gabrielli, L., Cenacchi, G., Gallo, C., Aspide, R., Frascaroli, G., Cortelli, P., Riefolo, M., Giannini, C., & D’Errico, A. (2021). Brain ischemic injury in COVID-19-infected patients: a series of 10 postmortem cases. Brain Pathology, 31(1), 205–210. https://doi.org/10.1111/bpa.12901

Fantini, J., di Scala, C., Chahinian, H., & Yahi, N. (2020). Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. International Journal of Antimicrobial Agents, 55(5), 105960. https://doi.org/10.1016/j.ijantimicag.2020.105960

Filosto, M., Cotti Piccinelli, S., Gazzina, S., Foresti, C., Frigeni, B., Servalli, M. C., Sessa, M., Cosentino, G., Marchioni, E., Ravaglia, S., Briani, C., Castellani, F., Zara, G., Bianchi, F., del Carro, U., Fazio, R., Filippi, M., Magni, E., Natalini, G., … Uncini, A. (2021). Guillain-Barre´ Syndrome and COVID-19: An observational multicentre study from two Italian hotspot regions. Journal of Neurology, Neurosurgery and Psychiatry, 92(7), 751–756. https://doi.org/10.1136/jnnp-2020-324837

Follmer, C. (2020). Viral infection-induced gut dysbiosis, neuroinflammation, and α-synuclein aggregation: updates and perspectives on COVID-19 and neurodegenerative disorders. ACS Chemical Neuroscience, 11(24), 4012–4016. https://doi.org/10.1021/acschemneuro.0c00671

Frithiof, R., Rostami, E., Kumlien, E., Virhammar, J., Fällmar, D., Hultström, M., Lipcsey, M., Ashton, N., Blennow, K., Zetterberg, H., & Punga, A. R. (2021). Critical illness polyneuropathy, myopathy and neuronal biomarkers in COVID-19 patients: A prospective study. Clinical Neurophysiology, 132(7), 1733–1740. https://doi.org/10.1016/j.clinph.2021.03.016

Frontera, J. A., Boutajangout, A., Masurkar, A. v, Betensky, R. A., Ge, Y., Vedvyas, A., Debure, L., Moreira, A., Lewis, A., & Huang, J. (2021). Elevation of neurodegenerative serum biomarkers among hospitalised COVID-19 patients. MedRxiv. 2021.09.01.21262985. https://doi.org/10.1101/2021.09.01.21262985

Giacomelli, A., Pezzati, L., Conti, F., Bernacchia, D., Siano, M., Oreni, L., Rusconi, S., Gervasoni, C., Ridolfo, A. L., & Rizzardini, G. (2020). Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study. Clinical Infectious Diseases, 71(15), 889–890. https://doi.org/10.1093/cid/ciaa330

Gigli, G. L., Bax, F., Marini, A., Pellitteri, G., Scalise, A., Surcinelli, A., & Valente, M. (2021). Guillain-Barré syndrome in the COVID-19 era: just an occasional cluster? Journal of Neurology, 268(4), 1195–1197. https://doi.org/10.1007/s00415-020-09911-3

Goldstein, M. R., Poland, G. A., & Graeber, C. W. (2020). Does apolipoprotein E genotype predict COVID-19 severity? QJM, 113(8), 537–538. https://doi.org/10.1093/qjmed/hcaa142

Gonçalves, F., & Magalhães, B. (2022). Effects of prolonged interruption of rehabilitation routines in amyotrophic lateral sclerosis patients. Palliative & Supportive Care, 20(3), 369–374. https://doi.org/10.1017/s1478951521000584

Gupta, A., Madhavan, M. v, Sehgal, K., Nair, N., Mahajan, S., Sehrawat, T. S., Bikdeli, B., Ahluwalia, N., Ausiello, J. C., & Wan, E. Y. (2020). Extrapulmonary manifestations of COVID-19. Nature Medicine, 26(7), 1017–1032. https://doi.org/10.1038/s41591-020-0968-3

Hao, F., Tan, W., Jiang, L., Zhang, L., Zhao, X., Zou, Y., Hu, Y., Luo, X., Jiang, X., McIntyre, R. S., Tran, B., Sun, J., Zhang, Z., Ho, R., Ho, C., & Tam, W. (2020). Do psychiatric patients experience more psychiatric symptoms during COVID-19 pandemic and lockdown? A case-control study with service and research implications for immunopsychiatry. Brain, Behavior, and Immunity, 87, 100–106. https://doi.org/10.1016/j.bbi.2020.04.069

Hatteb, S. A., & Daoudi, S. (2018). Movement disorders in a cohort of Algerian patients with multiple sclerosis. Revue Neurologique, 174(3), 167–172. https://doi.org/10.1016/j.neurol.2017.06.022

Helms, J., Kremer, S., Merdji, H., Clere-Jehl, R., Schenck, M., Kummerlen, C., Collange, O., Boulay, C., Fafi-Kremer, S., Ohana, M., Anheim, M., & Meziani, F. (2020). Neurologic Features in Severe SARS-CoV-2 Infection. New England Journal of Medicine, 382(23), 2268–2270. https://doi.org/10.1056/nejmc2008597

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., & Nitsche, A. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052

Hu, C., Chen, C., & Dong, X.-P. (2021). Impact of COVID-19 pandemic on patients with neurodegenerative diseases. Frontiers in Aging Neuroscience, 13, 664965. https://doi.org/10.3389/fnagi.2021.664965

Hulisz, D. (2018). Amyotrophic lateral sclerosis: disease state overview. The American Journal of Managed Care, 24(15), S320–S326.

Kanberg, N., Ashton, N. J., Andersson, L. M., Yilmaz, A., Lindh, M., Nilsson, S., Price, R. W., Blennow, K., Zetterberg, H., & Gisslén, M. (2020). Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology, 95(12), e1754–e1759. https://doi.org/10.1212/WNL.0000000000010111

Keddie, S., Pakpoor, J., Mousele, C., Pipis, M., Machado, P. M., Foster, M., Record, C. J., Keh, R. Y. S., Fehmi, J., & Paterson, R. W. (2021). Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barré syndrome. Brain, 144(2), 682–693. https://doi.org/10.1093/brain/awaa433

Kermani, N. Z., Song, W.-J., Badi, Y., Versi, A., Guo, Y., Sun, K., Bhavsar, P., Howarth, P., Dahlén, S.-E., & Sterk, P. J. (2021). Sputum ACE2, TMPRSS2 and FURIN gene expression in severe neutrophilic asthma. Respiratory Research, 22(1), 10. https://doi.org/10.1186/s12931-020-01605-8

Kumari, P., Rothan, H. A., Natekar, J. P., Stone, S., Pathak, H., Strate, P. G., Arora, K., Brinton, M. A., & Kumar, M. (2021). Neuroinvasion and encephalitis following intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice. Viruses, 13(1), 132. https://doi.org/10.3390/v13010132

Koyuncu, O., Hogue, I., & Enquist, L. (2013). Virus infections in the nervous system. Cell Host & Microbe, 13(4), 379–393. https://doi.org/10.1016/j.chom.2013.03.010

Kuo, C.-L., Pilling, L. C., Atkins, J. L., Masoli, J. A. H., Delgado, J., Kuchel, G. A., & Melzer, D. (2020). APOE e4 genotype predicts severe COVID-19 in the UK Biobank community cohort. The Journals of Gerontology: Series A, 75(11), 2231–2232. https://doi.org/10.1093/gerona/glaa131

Li, X., & Bedlack, R. (2021). COVID‐19–accelerated disease progression in two patients with amyotrophic lateral sclerosis. Muscle & Nerve, 64(3), E13-E15. https://doi.org/10.1002/mus.27351

Lim, K.-H., Yang, S., Kim, S.-H., & Joo, J.-Y. (2020). Elevation of ACE2 as a SARS-CoV-2 entry receptor gene expression in Alzheimer's disease. Journal of Infection, 81(3), e33–e34. https://doi.org/10.1016/j.jinf.2020.06.072

Louapre, C., Collongues, N., Stankoff, B., Giannesini, C., Papeix, C., Bensa, C., Deschamps, R., Créange, A., Wahab, A., & Pelletier, J. (2020). Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurology, 77(9), 1079–1088. https://doi.org/10.1001/jamaneurol.2020.2581

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., & Zhu, N. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/s0140-6736(20)30251-8

Luna, G., Alping, P., Burman, J., Fink, K., Fogdell-Hahn, A., Gunnarsson, M., Hillert, J., Langer-Gould, A., Lycke, J., & Nilsson, P. (2020). Infection risks among patients with multiple sclerosis treated with fingolimod, natalizumab, rituximab, and injectable therapies. JAMA Neurology, 77(2), 184–191. https://doi.org/10.1001/jamaneurol.2019.3365

Magusali, N., Graham, A. C., Piers, T. M., Panichnantakul, P., Yaman, U., Shoai, M., Reynolds, R. H., Botia, J. A., Brookes, K. J., & Guetta-Baranes, T. (2021). A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the OAS1 gene. Brain, 144(12), 3727–3741. https://doi.org/10.1093/brain/awab337

Mahalaxmi, I., Kaavya, J., Mohana Devi, S., & Balachandar, V. (2021). COVID-19 and olfactory dysfunction: A possible associative approach towards neurodegenerative diseases. In Journal of Cellular Physiology, 236(2), 763–770. https://doi.org/10.1002/jcp.29937

Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., Chang, J., Hong, C., Zhou, Y., Wang, D., Miao, X., Li, Y., & Hu, B. (2020). Neurologic manifestations of hospitalised patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurology, 77(6), 683–690. https://doi.org/10.1001/jamaneurol.2020.1127

Martí-Fàbregas, J., Guisado-Alonso, D., Delgado-Mederos, R., Martínez-Domeño, A., Prats-Sánchez, L., Guasch-Jiménez, M., Cardona, P., Núñez-Guillén, A., Requena, M., Rubiera, M., Olivé, M., Bustamante, A., Gomis, M., Amaro, S., Llull, L., Ustrell, X., Castilho de Oliveira, G., Seró, L., Gomez-Choco, M., … null, null. (2021). Impact of COVID-19 infection on the outcome of patients with ischemic stroke. Stroke, 52(12), 3908–3917. https://doi.org/10.1161/STROKEAHA.121.034883

Matschke, J., Lütgehetmann, M., Hagel, C., Sperhake, J. P., Schröder, A. S., Edler, C., Mushumba, H., Fitzek, A., Allweiss, L., Dandri, M., Dottermusch, M., Heinemann, A., Pfefferle, S., Schwabenland, M., Sumner Magruder, D., Bonn, S., Prinz, M., Gerloff, C., Püschel, K., … Glatzel, M. (2020). Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. The Lancet Neurology, 19(11), 919–929. https://doi.org/10.1016/S1474-4422(20)30308-2

Maury, A., Lyoubi, A., Peiffer-Smadja, N., de Broucker, T., & Meppiel, E. (2021). Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians. Revue Neurologique, 177(1), 51–64. https://doi.org/https://doi.org/10.1016/j.neurol.2020.10.001

Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 395(10229), 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0

Meinhardt, J., Radke, J., Dittmayer, C., Franz, J., Thomas, C., Mothes, R., Laue, M., Schneider, J., Brünink, S., Greuel, S., Lehmann, M., Hassan, O., Aschman, T., Schumann, E., Chua, R. L., Conrad, C., Eils, R., Stenzel, W., Windgassen, M., … Heppner, F. L. (2021). Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nature Neuroscience, 24(2), 168–175. https://doi.org/10.1038/s41593-020-00758-5

Moehn, S., Pencharz, P. B., & Ball, R. O. (2012). Lessons learned regarding symptoms of tryptophan deficiency and excess from animal requirement studies. Journal of Nutrition, 142(12). https://doi.org/10.3945/jn.112.159061

Montero-Escribano, P., Matías-Guiu, J., Gómez-Iglesias, P., Porta-Etessam, J., Pytel, V., & Matias-Guiu, J. A. (2020). Anti-CD20 and COVID-19 in multiple sclerosis and related disorders: A case series of 60 patients from Madrid, Spain. Multiple Sclerosis and Related Disorders, 42, 102185. https://doi.org/10.1016/j.msard.2020.102185

Moriguchi, T., Harii, N., Goto, J., Harada, D., Sugawara, H., Takamino, J., Ueno, M., Sakata, H., Kondo, K., Myose, N., Nakao, A., Takeda, M., Haro, H., Inoue, O., Suzuki-Inoue, K., Kubokawa, K., Ogihara, S., Sasaki, T., Kinouchi, H., … Shimada, S. (2020). A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. International Journal of Infectious Diseases, 94, 55–58. https://doi.org/10.1016/j.ijid.2020.03.062

Moss, B. P., Mahajan, K. R., Bermel, R. A., Hellisz, K., Hua, L. H., Hudec, T., Husak, S., McGinley, M. P., Ontaneda, D., Wang, Z., Weber, M., Tagliani, P., Cárdenas-Robledo, S., Zabalza, A., Arrambide, G., Carbonell-Mirabent, P., Rodríguez-Barranco, M., Sastre-Garriga, J., Tintore, M., … Fitzgerald, K. C. (2020). Multiple sclerosis management during the COVID-19 pandemic. Multiple Sclerosis Journal, 26(10), 1163–1171. https://doi.org/10.1177/1352458520948231

Motahharynia, A., Naghavi, S., Shaygannejad, V., & Adibi, I. (2022). Abrupt bilateral blindness as a rare post-acute demyelinating consequence of COVID-19. ENeurologicalSci, 28, 100411. https://doi.org/10.1016/j.ensci.2022.100411

Najjar, S., Najjar, A., Chong, D. J., Pramanik, B. K., Kirsch, C., Kuzniecky, R. I., Pacia, S. v, & Azhar, S. (2020). Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. Journal of Neuroinflammation, 17(1), 231. https://doi.org/10.1186/s12974-020-01896-0

Naser Moghadasi, A. (2021). COVID-19-related autoimmune disorders of central nervous system (CRAD-C): Is it a new entity? Autoimmunity Reviews, 20(9), 102888. https://doi.org/10.1016/j.autrev.2021.102888

Nasiri, E., Naseri, A., Yazdchi, M., & Talebi, M. (2021). Is there a link between COVID-19 and Creutzfeldt-Jakob Disease? a Case Report. Journal of Research in Clinical Medicine, 9(1), 26.

Ng Kee Kwong, K. C., Mehta, P. R., Shukla, G., & Mehta, A. R. (2020). COVID-19, SARS and MERS: A neurological perspective. Journal of Clinical Neuroscience, 77, 13–16. https://doi.org/10.1016/j.jocn.2020.04.124

Nichols, E., Szoeke, C. E. I., Vollset, S. E., Abbasi, N., Abd-Allah, F., Abdela, J., Aichour, M. T. E., Akinyemi, R. O., Alahdab, F., & Asgedom, S. W. (2019). Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 88–106. https://doi.org/10.1016/s1474-4422(18)30403-4

Novi, G., Rossi, T., Pedemonte, E., Saitta, L., Rolla, C., Roccatagliata, L., Inglese, M., & Farinini, D. (2020). Acute disseminated encephalomyelitis after SARS-CoV-2 infection. Neurology(R) Neuroimmunology & Neuroinflammation, 7(5). https://doi.org/10.1212/NXI.0000000000000797

Owens, W. B. (2011). Blood Pressure Control in Acute Cerebrovascular Disease. Journal of Clinical Hypertension, 13(3), 205–211. https://doi.org/10.1111/j.1751-7176.2010.00394.x

Pairo-Castineira, E., Clohisey, S., Klaric, L., Bretherick, A. D., Rawlik, K., Pasko, D., Walker, S., Parkinson, N., Fourman, M. H., & Russell, C. D. (2021). Genetic mechanisms of critical illness in COVID-19. Nature, 591(7848), 92–98. https://doi.org/10.1038/s41586-020-03065-y

Pan, P., Shen, M., Yu, Z., Ge, W., Chen, K., Tian, M., Xiao, F., Wang, Z., Wang, J., & Jia, Y. (2021). SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nature Communications, 12(1), 4664. https://doi.org/10.1038/s41467-021-25015-6

Paniz‐Mondolfi, A., Bryce, C., Grimes, Z., Gordon, R. E., Reidy, J., Lednicky, J., Sordillo, E. M., & Fowkes, M. (2020). Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2). Journal of Medical Virology, 92(7), 699–702. https://doi.org/10.1002/jmv.25915

Paterson, R. W., Brown, R. L., Benjamin, L., Nortley, R., Wiethoff, S., Bharucha, T., Jayaseelan, D. L., Kumar, G., Raftopoulos, R. E., Zambreanu, L., Vivekanandam, V., Khoo, A., Geraldes, R., Chinthapalli, K., Boyd, E., Tuzlali, H., Price, G., Christofi, G., Morrow, J., … Zandi, M. S. (2020). The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain, 143(10), 3104–3120. https://doi.org/10.1093/brain/awaa240

Paybast, S., Gorji, R., & Mavandadi, S. (2020). Guillain-Barré Syndrome as a Neurological Complication of Novel COVID-19 Infection: A Case Report and Review of the Literature. The Neurologist, 25(4), 101–103. https://doi.org/10.1097/NRL.0000000000000291

Pennisi, M., Crupi, R., di Paola, R., Ontario, M. L., Bella, R., Calabrese, E. J., Crea, R., Cuzzocrea, S., & Calabrese, V. (2017). Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. Journal of Neuroscience Research, 95(7), 1360–1372. https://doi.org/10.1002/jnr.23986

Petruk, G., Puthia, M., Petrlova, J., Samsudin, F., Strömdahl, A. C., Cerps, S., Uller, L., Kjellström, S., Bond, P. J., & Schmidtchen, A. (2020). SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts pro-inflammatory activity. Journal of Molecular Cell Biology, 12(12), 916–932. https://doi.org/10.1093/jmcb/mjaa067

Pilotto, A., Masciocchi, S., Volonghi, I., de Giuli, V., Caprioli, F., Mariotto, S., Ferrari, S., Bozzetti, S., Imarisio, A., & Risi, B. (2021). SARS-CoV-2 encephalitis is a cytokine release syndrome: evidences from cerebrospinal fluid analyses. Clinical Infectious Diseases, 73(9), e3019-e3026. https://doi.org/10.1093/cid/ciaa1933

Poyiadji, N., Shahin, G., Noujaim, D., Stone, M., Patel, S. C., & Griffith, B. (2020). COVID-19-associated acute hemorrhagic necrotising encephalopathy: imaging features. Radiology, 296(2), 119. https://doi.org/10.1148/radiol.2020201187

Rogers, J. P., Chesney, E., Oliver, D., Pollak, T. A., McGuire, P., Fusar-Poli, P., Zandi, M. S., Lewis, G., & David, A. S. (2020). Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. The Lancet Psychiatry, 7(7), 611–627. https://doi.org/10.1016/s2215-0366(20)30203-0

Saei, A. A., Sharifi, S., & Mahmoudi, M. (2020). COVID-19: nanomedicine uncovers blood-clot mystery. Journal of Proteome Research, 19(11), 4364–4373. https://doi.org/10.1021/acs.jproteome.0c00425

Safavi, F., Nourbakhsh, B., & Azimi, A. R. (2020). B-cell depleting therapies may affect susceptibility to acute respiratory illness among patients with multiple sclerosis during the early COVID-19 epidemic in Iran. Multiple Sclerosis and Related Disorders, 43, 102195. https://doi.org/10.1016/j.msard.2020.102195

Sanchez-Dalmau, B., Martinez-Lapiscina, E. H., Pulido-Valdeolivas, I., Zubizarreta, I., Llufriu, S., Blanco, Y., Sola-Valls, N., Sepulveda, M., Guerrero, A., & Alba, S. (2018). Predictors of vision impairment in multiple sclerosis. PLoS One, 13(4), e0195856. https://doi.org/10.1371/journal.pone.0195856

Sang, E. R., Tian, Y., Miller, L. C., & Sang, Y. (2021). Epigenetic evolution of ACE2 and IL-6 genes: non-canonical interferon-stimulated genes correlate to COVID-19 susceptibility in vertebrates. Genes, 12(2), 154. https://doi.org/10.3390/genes12020154

Sedaghat, Z., & Karimi, N. (2020). Guillain Barre syndrome associated with COVID-19 infection: A case report. Journal of Clinical Neuroscience, 76, 233–235. https://doi.org/10.1016/j.jocn.2020.04.062

Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences, 117(21), 11727–11734. https://doi.org/10.1073/pnas.2003138117

Shinu, P., Morsy, M. A., Deb, P. K., Nair, A. B., Goyal, M., Shah, J., & Kotta, S. (2020). SARS CoV-2 Organotropism Associated Pathogenic Relationship of Gut-Brain Axis and Illness. Frontiers in Molecular Biosciences, 7, 606779. https://doi.org/10.3389/fmolb.2020.606779

Sindona, C., Schepici, G., Contestabile, V., Bramanti, P., & Mazzon, E. (2021). NOX2 activation in COVID-19: Possible implications for neurodegenerative diseases. Medicina, 57(6), 604.

Singh, H., Singh, A., Khan, A. A., & Gupta, V. (2021). Immune mediating molecules and pathogenesis of COVID-19-associated neurological disease. Microbial Pathogenesis, 158, 105023. https://doi.org/10.1016/j.micpath.2021.105023

Siow, I., Lee, K. S., Zhang, J. J. Y., Saffari, S. E., & Ng, A. (2021). Encephalitis as a neurological complication of COVID‐19: a systematic review and meta‐analysis of incidence, outcomes, and predictors. European Journal of Neurology, 28(10), 3491–3502. https://doi.org/10.1111/ene.14913

Solomon, I. H., Normandin, E., Bhattacharyya, S., Mukerji, S. S., Keller, K., Ali, A. S., Adams, G., Hornick, J. L., Padera, R. F., & Sabeti, P. (2020). Neuropathological Features of Covid-19. New England Journal of Medicine, 383(10), 989–992. https://doi.org/10.1056/NEJMc2019373

Sormani, M. P. (2020). An Italian programme for COVID-19 infection in multiple sclerosis. The Lancet Neurology, 19(6), 481–482. https://doi.org/10.1016/s1474-4422(20)30147-2

Strafella, C., Caputo, V., Termine, A., Barati, S., Caltagirone, C., Giardina, E., & Cascella, R. (2020). Investigation of genetic variations of IL6 and IL6R as potential prognostic and pharmacogenetics biomarkers: implications for COVID-19 and neuroinflammatory disorders. Life (Basel), 10(12), 351. https://doi.org/10.3390/life10120351

Tona, F., de Giglio, L., Petsas, N., Sbardella, E., Prosperini, L., Upadhyay, N., Gianni, C., Pozzilli, C., & Pantano, P. (2018). Role of cerebellar dentate functional connectivity in balance deficits in patients with multiple sclerosis. Radiology, 287(1), 267–275. https://doi.org/10.1148/radiol.2017170311

Toscano, G., Palmerini, F., Ravaglia, S., Ruiz, L., Invernizzi, P., Cuzzoni, M. G., Franciotta, D., Baldanti, F., Daturi, R., & Postorino, P. (2020). Guillain–Barré syndrome associated with SARS-CoV-2. New England Journal of Medicine, 382(26), 2574–2576. https://doi.org/10.1056/nejmc2009191

Tremblay, M.-E., Madore, C., Bordeleau, M., Tian, L., & Verkhratsky, A. (2020). Neuropathobiology of COVID-19: the role for glia. Frontiers in Cellular Neuroscience, 14, 592214. https://doi.org/10.3389/fncel.2020.592214

Trujillo Gittermann, L. M., Feris, S. N. V., & von Oetinger Giacoman, A. (2020). Relation between COVID-19 and Guillain-Barré syndrome in adults: a systematic review. Neurologia, 35(9), 646–654. https://doi.org/10.1016%2Fj.nrleng.2020.07.005

Umemura, A., Oeda, T., Tomita, S., Hayashi, R., Kohsaka, M., Park, K., Sugiyama, H., & Sawada, H. (2014). Delirium and high fever are associated with subacute motor deterioration in Parkinson disease: a nested case-control study. PloS One, 9(6), e94944. https://doi.org/10.1371/journal.pone.0094944

Valdés-Florido, M. J., López-Díaz, Á., Palermo-Zeballos, F. J., Martínez-Molina, I., Martín-Gil, V. E., Crespo-Facorro, B., & Ruiz-Veguilla, M. (2020). Reactive psychoses in the context of the COVID-19 pandemic: Clinical perspectives from a case series. Revista de Psiquiatria y Salud Mental, 13(2), 90–94. https://doi.org/10.1016/j.rpsm.2020.04.009

Vellingiri, B., Jayaramayya, K., Iyer, M., Narayanasamy, A., Govindasamy, V., Giridharan, B., Ganesan, S., Venugopal, A., Venkatesan, D., & Ganesan, H. (2020). COVID-19: A promising cure for the global panic. Science of the Total Environment, 725, 138277. https://doi.org/10.1016%2Fj.scitotenv.2020.138277

Verkhratsky, A., Li, Q., Melino, S., Melino, G., & Shi, Y. (2020). Can COVID-19 pandemic boost the epidemic of neurodegenerative diseases? Biology Direct, 15(1), 28. https://doi.org/10.1186/s13062-020-00282-3

Virhammar, J., Nääs, A., Fällmar, D., Cunningham, J. L., Klang, A., Ashton, N. J., Jackmann, S., Westman, G., Frithiof, R., Blennow, K., Zetterberg, H., Kumlien, E., & Rostami, E. (2021). Biomarkers for central nervous system injury in cerebrospinal fluid are elevated in COVID-19 and associated with neurological symptoms and disease severity. European Journal of Neurology, 28(10), 3324–3331. https://doi.org/10.1111/ene.14703

Wang, H., Lu, J., Zhao, X., Qin, R., Song, K., Xu, Y., Zhang, J., & Chen, Y. (2021). Alzheimer's disease in elderly COVID-19 patients: potential mechanisms and preventive measures. Neurological Sciences, 42(12), 4913-4920. https://doi.org/10.1007/s10072-021-05616-1

Williams, F. M. K., Freidin, M. B., Mangino, M., Couvreur, S., Visconti, A., Bowyer, R. C. E., le Roy, C. I., Falchi, M., Mompeó, O., & Sudre, C. (2020). Self-reported symptoms of COVID-19, including symptoms most predictive of SARS-CoV-2 infection, are heritable. Twin Research and Human Genetics, 23(6), 316–321.

World Health Organization. (2021a). Classification of Omicron (B. 1.1. 529): SARS-CoV-2 variant of concern. https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern. Last access 7.11.2022

World Health Organization. (2021b). Tracking SARS-CoV-2 variants. https://www.who.int/activities/tracking-SARS-CoV-2-variants. Last access 7.11.2022

World Health Organization. (2022). Weekly Operational Update on COVID-19. https://www.who.int/publications/m/item/weekly-operational-update-on-covid-19---22-february-2022. Last access 7.11.2022

Xu, J., Wu, Z., Zhang, M., Liu, S., Zhou, L., Yang, C., & Liu, C. (2021). The Role of the Gastrointestinal System in Neuroinvasion by SARS-CoV-2. Frontiers in Neuroscience, 15, 694446. https://doi.org/10.3389/fnins.2021.694446

Yin, R., Feng, W., Wang, T., Chen, G., Wu, T., Chen, D., Lv, T., & Xiang, D. (2020). Concomitant neurological symptoms observed in a patient diagnosed with coronavirus disease 2019. Journal of Medical Virology, 92(10), 1782–1784. https://doi.org/10.1002/jmv.25888

Young, M. J., O'Hare, M., Matiello, M., & Schmahmann, J. D. (2020). Creutzfeldt-Jakob disease in a man with COVID-19: SARS-CoV-2-accelerated neurodegeneration? Brain, Behavior, and Immunity, 89, 601–603. https://doi.org/10.1016/j.bbi.2020.07.007

Yuki, N., & Hartung, H.-P. (2012). Guillain–Barré Syndrome. New England Journal of Medicine, 366(24), 2294–2304. https://doi.org/10.1056/nejmra1114525

Zach, H., Dirkx, M. F., Pasman, J. W., Bloem, B. R., & Helmich, R. C. (2017). Cognitive stress reduces the effect of levodopa on Parkinson's resting tremor. CNS Neuroscience & Therapeutics, 23(3), 209–215. https://doi.org/10.1111/cns.12670

Zhang, Y., Xiao, M., Zhang, S., Xia, P., Cao, W., Jiang, W., Chen, H., Ding, X., Zhao, H., Zhang, H., Wang, C., Zhao, J., Sun, X., Tian, R., Wu, W., Wu, D., Ma, J., Chen, Y., Zhang, D., … Zhang, S. (2020). Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. New England Journal of Medicine, 382(17), e38. https://doi.org/10.1056/nejmc2007575

Zhou, Z., Kang, H., Li, S., & Zhao, X. (2020). Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. Journal of Neurology, 267(8), 2179–2184. https://doi.org/10.1007%2Fs00415-020-09929-7

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., & Lu, R. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382, 727-733. https://doi.org/10.1056/NEJMoa2001017

Downloads

Published

2022-12-31

How to Cite

Abd El-Fadeal, N. M., Anber, S. A., Elkot, H. A., Maged, G., Saeed, I. A., Negm, M. M., Abdelsamad, M. A., El-bakri, A. and Mohamed, W. (2022) “COVID-19 and the central nervous system: What is the interplay?”, Neuroscience Research Notes, 5(4), p. 155. doi: 10.31117/neuroscirn.v5i4.155.