Drawing on paper versus drawing on a tablet: an EEG study

Authors

  • Abdelaziz Lamkaddem (1) Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy of Fez, Triq Sidi Hrazem, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco. (2) Université Privée de Marrakech, P2009, Marrakech 40000.
  • Abdelkrim Janati Idrissi Clinical Neurosciences Laboratory, Faculty of Medicine, and Pharmacy of Fez, Triq Sidi Hrazem, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
  • Zouhayr Souirti (1) Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy of Fez, Triq Sidi Hrazem, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco. (2) Neurology Department, Sleep Center, Hassan II University Hospital, Triq Sidi Hrazem, Fez 30000, Morocco.

DOI:

https://doi.org/10.31117/neuroscirn.v6i1.170

Keywords:

EEG, ERD/ERS, drawing, paper, tablet, cognitive task

Abstract

Drawing is an activity that requires visual, emotional, and movement skills. This study compares, for the first time, children's brain activity during drawing on paper versus drawing on a tablet. First, we examined drawing activity in 26 right-handed children using the EEG combined with Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS) methods. Then, we asked participants to copy a house model where we used a Neurosoft EEG system to record the data and analyse it using the Brainstorm application. Both experimental conditions activate the brain's anterior and posterior cortices, but the activity in the anterior cortices was slightly higher during the drawing on paper than on the tablet. Conversely, compared to the paper condition, brain activity in the posterior cortices was slightly higher while drawing on the tablet.

References

Durka, P.J., Ircha, D., Neuper, C., & Pfurtschellr, G. (2001). Time-frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation. Medical & Biological Engineering & Computing, 39, 315–321 https://doi.org/10.1007/BF02345286

Ferber, S., Mraz, R., Baker, N., & Graham, S. J. (2007). Shared and differential neural substrates of copying versus drawing: a functional magnetic resonance imaging study. Neuroreport, 18(11),1089–1093. https://doi.org/10.1097/WNR.0b013e3281ac2143

Flores L. P. (2002). Occipital lobe morphological anatomy: anatomical and surgical aspects. Arquivos de Neuro-psiquiatria, 60(3-A), 566–571. https://doi.org/10.1590/s0004-282x2002000400010

Guérin, F., Ska, B., & Belleville, S. (1999). Cognitive processing of drawing abilities. Brain and Cognition, 40(3), 464–478. https://doi.org/10.1006/brcg.1999.1079-

Harrington, G. S., Farias, D., Davis, C. H., & Buonocore, M. H. (2007). Comparison of the neural basis for imagined writing and drawing. Human Brain Mapping, 28(5), 450–459. https://doi.org/10.1002/hbm.20286

Hawes, Z., Sokolowski, H. M., Ononye, C. B., & Ansari, D. (2019). Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain electrode sites associated with symbolic number, arithmetic, and mental rotation. Neuroscience and Biobehavioral Reviews, 103, 316–336. https://doi.org/10.1016/j.neubiorev.2019.05.007

Ino, T., Asada, T., Ito, J., Kimura, T., & Fukuyama, H. (2003). Parieto-frontal networks for clock drawing revealed with fMRI. Neuroscience Research, 45(1), 71–77. https://doi.org/10.1016/s0168-0102(02)00194-3

Keisker, B., Hepp-Reymond, M. C., Blickenstorfer, A., Meyer, M., & Kollias, S. S. (2009). Differential force scaling of fine-graded power grip force in the sensorimotor network. Human Brain Mapping, 30(8), 2453–2465. https://doi.org/10.1002/hbm.20676.

Liao, K., Xiao, R., Gonzalez, J., & Ding, L. (2014). Decoding Individual Finger Movements from One Hand Using Human EEG Signals. PLOS ONE, 9(1): e85192. https://doi.org/10.1371/journal.pone.0085192

Longcamp, M., Zerbato-Poudou, M. T., & Velay, J. L. (2005). The influence of writing practice on letter recognition in preschool children: a comparison between handwriting and typing. Acta Psychologica, 119(1), 67–79. https://doi.org/10.1016/j.actpsy.2004.10.019

Makuuchi, M., Kaminaga, T., & Sugishita, M. (2003). Both parietal electrode sites are involved in drawing: a functional MRI study and implications for constructional apraxia. Brain research. Cognitive Brain Research, 16(3), 338–347. https://doi.org/10.1016/s0926-6410(02)00302-6

McCrea, S. (2014). A neuropsychological model of free-drawing from memory in constructional apraxia: a theoretical review. American Journal of Psychiatry Neuroscience, 2, 60–75. https://doi.org/10.11648/j.ajpn.20140205.11

Meulenbroek, R. G., Van Galen, G. P., Hulstijn, M., Hulstijn, W., & Bloemsaat, G. (2005). Muscular co-contraction covaries with task load to control the flow of motion in fine motor tasks. Biological Psychology, 68(3), 331–352. https://doi.org/10.1016/j.biopsycho.2004.06.002

Ogawa, K., & Inui, T. (2009). The role of the posterior parietal cortex in drawing by copying. Neuropsychologia, 47(4), 1013–1022. https://doi.org/10.1016/j.neuropsychologia.2008.10.022

Ose Askvik, E., van der Weel, F., & van der Meer, A. (2020). The Importance of Cursive Handwriting Over Typewriting for Learning in the Classroom: A High-Density EEG Study of 12-Year-Old Children and Young Adults. Frontiers in Psychology, 11, 1810. https://doi.org/10.3389/fpsyg.2020.01810

Panesi, S., & Morra, S. (2018). Relationships between the early development of drawing and language: the role of executive functions and working memory. The Open Psychology Journal, 11(1). DOI: 10.2174/1874350101811010015

Pfurtscheller, G. (2001). Functional brain imaging based on ERD/ERS. Vision Research, 41(10-11), 1257–1260. https://doi.org/10.1016/s0042-6989(00)00235-2

Picard, D., Martin, P., & Tsao, R. (2014). iPads at school? A quantitative comparison of elementary schoolchildren's pen-on-paper versus finger-on-screen drawing skills. Journal of Educational Computing Research, 50(2), 203-212.

Roncato, S., Sartori, G., Masterson, J., and Rumiati, R. (1987).Constructional apraxia: an information-processing analysis. Cognitive Neuropsychology, 4, 113–129. https://doi.org/10.1080/02643298708252037

Saggar, M., Quintin, E. M., Bott, N. T., Kienitz, E., Chien, Y. H., Hong, D. W., Liu, N., Royalty, A., Hawthorne, G., & Reiss, A. L. (2017). Changes in brain activation associated with spontaneous improvization and figural creativity after design-thinking-based training: a longitudinal fMRI Study. Cerebral Cortex, 27(7), 3542–3552. https://doi.org/10.1093/cercor/bhw171

Sommers, P. V. (1989). A system for drawing and drawing related neuropsychology. Cognitive Neuropsychology, 6, 117–164. https://doi.org/10.1080/02643298908253416

Srinivasan N. (2007). Cognitive neuroscience of creativity: EEG based approaches. Methods, 42(1), 109–116. https://doi.org/10.1016/j.ymeth.2006.12.008

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011, 879716. https://doi.org/10.1155/2011/879716

van der Meer, A.L.H. and van der Weel, F.R. (2017) Only Three fingers write, but the whole brain works: a high-density eeg study showing advantages of drawing over typing for learning. Frontiers in Psychology, 8, 706. https://doi.org/10.3389/fpsyg.2017.00706

Yuan, Y., & Brown, S. (2014). The neural basis of mark-making: a functional MRI study of drawing. PLOS One, 9(10), e108628. https://doi.org/10.1371/journal.pone.0108628

Downloads

Published

2023-02-11

How to Cite

Lamkaddem, A., Idrissi, A. J., & Souirti, Z. (2023). Drawing on paper versus drawing on a tablet: an EEG study. Neuroscience Research Notes, 6(1), 170. https://doi.org/10.31117/neuroscirn.v6i1.170