Brain regions involved in speech production, mechanism and development
DOI:
https://doi.org/10.31117/neuroscirn.v5i4.178Keywords:
Superior temporal gyrus, speech production, speech development, speech mechanismAbstract
Speech might be one of the best inventions of human beings due to its critical communicative role in individuals' daily lives. Hence any study about it is valuable. To our knowledge, merely three studies focused on brain regions' associations with speech production were published more than eighteen years ago; furthermore, research on the brain areas associated with speech production is currently insufficient. The present review aims to provide information about all brain areas contributing to speech production to update the knowledge of brain areas related to speech production. The current study confirms earlier claims about activating some brain areas in the process; however, the previous studies were not comprehensive, and not all brain areas were mentioned. Three cerebral lobes are involved in the process, namely, the frontal, parietal and temporal lobes. The regions involved include the left superior parietal lobe, Wernicke's area, Heschl's gyri, primary auditory cortex, left posterior superior temporal gyrus (pSTG), Broca's area, and premotor cortex. In addition, regions of the lateral sulcus (anterior insula and posterior superior temporal sulcus), basal ganglia (putamen), and forebrain (thalamus) showed participation in the process. However, there was a different brain activation of overt and covert or silent speech (Broca's and Wernicke's areas). Moreover, mouth position and breathing style showed a difference in speech mechanism. In terms of speech development, the early postnatal years are important for speech development, as well as identifying three crucial stages of speech development: the pre-verbal stage, transition to active speech, and refinement of speech. In addition, during the early years of speech development, auditory and motor brain regions showed involvement in the process.
References
Agnew, Z., McGettigan, C., Banks, B., & Scott, S. (2013). Articulatory movements modulate auditory responses to speech. NeuroImage, 73, 191–199. https://doi.org/10.1016/j.neuroimage.2012.08.020
Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: role of the STS region. Trends in Cognitive Sciences, 4(7), 267–278. https://doi.org/10.1016/s1364-6613(00)01501-1
Allport, D. A. (1984). Speech Production and Comprehension: One Lexicon or Two? Cognition and Motor Processes, 209–228. https://doi.org/10.1007/978-3-642-69382-3_15
Augustine, J. (1996). Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research Reviews, 22(3), 229–244. https://doi.org/10.1016/s0165-0173(96)00011-2
Barch, D. M., Sabb, F. W., Carter, C. S., Braver, T. S., Noll, D. C., & Cohen, J. D. (1999). Overt verbal responding during fMRI scanning: empirical investigations of problems and potential solutions. NeuroImage, 10(6), 642–657. https://doi.org/10.1006/nimg.1999.0500
Baskaran, L. (2004). Developmental Linguistics: Communication and infancy. Language and Linguistics Faculty, UM.
Beauchamp, M. S., Argall, B. D., Bodurka, J., Duyn, J. H., & Martin, A. (2004). Unraveling multisensory integration: patchy organisation within human STS multisensory cortex. Nature Neuroscience, 7(11), 1190–1192. https://doi.org/10.1038/nn1333
Behroozmand, R., Oya, H., Nourski, K., Kawasaki, H., Larson, C.R., Brugge, J. F., Howard III, M. A., Greenlee, J. D. W. (2016). Neural correlates of vocal production and motor control in human Heschl’s gación y teoría (Psychology of Language Research and theory). Madrid: Editorial Trotta. ISBN: 84-87699-31-6
Bernstein, L. E., & Liebenthal, E. (2014). Neural pathways for visual speech perception. Frontiers in Neuroscience, 8, 1-18. https://doi.org/10.3389/fnins.2014.00386
Berti, L. C., de Assis, M. F., Cremasco, E., & Cardoso, A. C. V. (2021). Speech production and speech perception in children with speech sound disorder. Clinical Linguistics & Amp; Phonetics, 36(2–3), 183–202. https://doi.org/10.1080/02699206.2021.1948609
Bhaya-Grossman, I., & Chang, E. F. (2022). Speech computations of the human superior temporal gyrus. Annual Review of Psychology, 73(1), 79–102. https://doi.org/10.1146/annurev-psych-022321-035256
Binder J. R. (2015). The Wernicke area: Modern evidence and a reinterpretation. Neurology, 85(24), 2170–2175. https://doi.org/10.1212/WNL.0000000000002219
Binder, J. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512–528. https://doi.org/10.1093/cercor/10.5.512
Blasi, A., Mercure, E., Lloyd-Fox, S., Thomson, A., Brammer, M., Sauter, D., Deeley, Q., Barker, G., Renvall, V., Deoni, S., Gasston, D., Williams, S., Johnson, M., Simmons, A., & Murphy, D. (2011). Early specialisation for voice and emotion processing in the infant brain. Current Biology, 21(14), 1220–1224. https://doi.org/10.1016/j.cub.2011.06.009
Bonte, M., & Blomert, L. (2004). Developmental changes in ERP correlates of spoken word recognition during early school years: a phonological priming study. Clinical Neurophysiology, 115(2), 409–423. https://doi.org/10.1016/s1388-2457(03)00361-4
Bonte, M., Frost, M. A., Rutten, S., Ley, A., Formisano, E., & Goebel, R. (2013). Development from childhood to adulthood increases morphological and functional inter-individual variability in the right superior temporal cortex. NeuroImage, 83, 739–750. https://doi.org/10.1016/j.neuroimage.2013.07.017
Bonte, M., Ley, A., Scharke, W., Formisano, E. (2016). Developmental refinement of cortical systems for speech and voice processing. NeuroImage, 128, 373–384. http://dx.doi.org/10.1016/j.neuroimage.2016.01.015
Bookheimer, S. Y., Zeffiro, T. A., Blaxton, T., Gaillard, W., & Theodore, W. (1995). Regional cerebral blood flow during object naming and word reading. Human Brain Mapping, 3(2), 93–106. https://doi.org/10.1002/hbm.460030206
Braine, M. D. S., & Bowerman, M. (1976). Children's First Word Combinations. Monographs of the Society for Research in Child Development, 41(1), 1. https://doi.org/10.2307/1165959
Brauer, J. (2014). The brain and language: how our brains communicate. Frontiers for Young Minds, 2, 14. https://doi.org/10.3389/frym.2014.00014
Brownsett, S. L. E., & Wise, R. J. S. (2009). The contribution of the parietal lobes to speaking and writing. Cerebral Cortex, 20(3), 517–523. https://doi.org/10.1093/cercor/bhp120
Buchsbaum, B. R., Hickok, G., & Humphries, C. (2001). Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cognitive Science, 25(5), 663–678. https://doi.org/10.1207/s15516709cog2505_2
Bui, T., & M Das, J. (2021). Neuroanatomy, Cerebral Hemisphere. In StatPearls. StatPearls Publishing. Leroy, F., Cai, Q., Bogart, S. L., Dubois, J., Coulon, O., Monzalvo, K., Fischer, C., Glasel, H., van der Haegen, L., Bénézit, A., Lin, C. P., Kennedy, D. N., Ihara, A. S., Hertz-Pannier, L., Moutard, M. L., Poupon, C., Brysbaert, M., Roberts, N., Hopkins, W. D., . . . Dehaene-Lambertz, G. (2015). New human-specific brain landmark: The depth asymmetry of superior temporal sulcus. Proceedings of the National Academy of Sciences, 112(4), 1208–1213. https://doi.org/10.1073/pnas.1412389112
Calvert, G. A., Campbell, R., & Brammer, M. J. (2000). Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology, 10(11), 649–657. https://doi.org/10.1016/s0960-9822(00)00513-3
Campbell A. W. (1905). Histological studies on the localisation of cerebral function. Cambridge: Cambridge University Press.
Chen, L., Goucha, T., Männel, C., Friederici, A. D., & Zaccarella, E. (2021). Hierarchical syntactic processing is beyond mere associating: Functional magnetic resonance imaging evidence from a novel artificial grammar. Human Brain Mapping, 42(10), 3253–3268. https://doi.org/10.1002/hbm.25432
Christoffels, I. K., Formisano, E., & Schiller, N. O. (2007). Neural correlates of verbal feedback processing: An fMRI study employing overt speech. Human Brain Mapping, 28(9), 868–879. https://doi.org/10.1002/hbm.20315
Coleman, J. (1998). Cognitive reality and the phonological lexicon: A review. Journal of Neurolinguistics, 11(3), 295–320. https://doi.org/10.1016/s0911-6044(97)00014-6
Dehaene-Lambertz, G., Hertz-Pannier, L., Dubois, J., Mériaux, S., Roche, A., Sigman, M., & Dehaene, S. (2006). Functional organisation of perisylvian activation during presentation of sentences in pre-verbal infants. Proceedings of the National Academy of Sciences, 103(38), 14240–14245. https://doi.org/10.1073/pnas.0606302103
Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., & Gagnon, D. A. (1997). Lexical access in aphasic and nonaphasic speakers. Psychological Review, 104(4), 801–838. https://doi.org/10.1037/0033-295x.104.4.801
Dronkers, N. F. (1996). A new brain region for coordinating speech articulation. Nature, 384(6605), 159–161. https://doi.org/10.1038/384159a0
Dronkers, N. F., Plaisant, O., Iba-Zizen, M. T., & Cabanis, E. A. (2014). Broca’s area. Wikipedia. https://upload.wikimedia.org/wikipedia/commons/b/b4/Broca%27s_area_-_lateral_view.png
Dronkers, N., & Ogar, J. (2004). Brain areas involved in speech production. Brain, 127(7), 1461–1462. https://doi.org/10.1093/brain/awh233
Ekert, J. O., Gajardo-Vidal, A., Lorca-Puls, D. L., Hope, T. M., Dick, F., Crinion, J. T., Green, D. W., & Price, C. J. (2021). Dissociating the functions of three left posterior superior temporal regions that contribute to speech perception and production. NeuroImage, 245, 118764. https://doi.org/10.1016/j.neuroimage.2021.118764
Flinker, A., Korzeniewska, A., Shestyuk, A. Y., Franaszczuk, P. J., Dronkers, N. F., Knight, R. T., & Crone, N. E. (2015). Redefining the role of Broca's area in speech. Proceedings of the National Academy of Sciences, 112(9), 2871–2875. https://doi.org/10.1073/pnas.1414491112
Galaburda, A., & Sanides, F. (1980). Cytoarchitectonic organisation of the human auditory cortex. The Journal of Comparative Neurology, 190(3), 597–610. https://doi.org/10.1002/cne.901900312
Geva, S., Schneider, L. M., Khan, S., Lorca-Puls, D. L., Gajardo-Vidal, A., Hope, T. M. H., Green, D. W., & Price, C. J. (2022). Enhanced left superior parietal activation during successful speech production in patients with left dorsal striatal damage and error-prone neurotypical participants. Cerebral Cortex, bhac282. https://doi.org/10.1093/cercor/bhac282
Ghandili, M., & Munakomi, S. (2022). Neuroanatomy, Putamen. In StatPearls. StatPearls Publishing.
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent, T. F., Herman, D. H., Clasen, L. S., Toga, A. W., Rapoport, J. L., & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101(21), 8174–8179. https://doi.org/10.1073/pnas.0402680101
Goldstein, L., & Fowler, C. A. (2003). Articulatory Phonology: A phonology for public language use. Phonetics and Phonology in Language Comprehension and Production, 159–208. https://doi.org/10.1515/9783110895094.159
Gómez-Vilda, P., Gómez-Rodellar, A., Vicente, J. M. F., Mekyska, J., Palacios-Alonso, D., Rodellar-Biarge, V., Álvarez-Marquina, A., Eliasova, I., Kostalova, M., & Rektorova, I. (2019). Neuromechanical Modelling of Articulatory Movements from Surface Electromyography and Speech Formants. International Journal of Neural Systems, 29(02), 1850039. https://doi.org/10.1142/s0129065718500399
Gracco, V. L., Tremblay, P., & Pike, B. (2005). Imaging speech production using fMRI. NeuroImage, 26(1), 294–301. https://doi.org/10.1016/j.neuroimage.2005.01.033
Graves, W. W., Grabowski, T. J., Mehta, S., & Gupta, P. (2008). The left posterior superior temporal gyrus participates specifically in accessing lexical phonology. Journal of Cognitive Neuroscience, 20(9), 1698–1710. https://doi.org/10.1162/jocn.2008.20113
Grossmann, T., Oberecker, R., Koch, S. P., & Friederici, A. D. (2010). The developmental origins of voice processing in the human brain. Neuron, 65(6), 852–858. https://doi.org/10.1016/j.neuron.2010.03.001
Hacking, C. (2018). Location of the posterior superior temporal sulcus. Radiopaedia.
Häggström, M. (2007). Location of Primary auditory cortex. https://upload.wikimedia.org/wikipedia/commons/8/8e/Primary_auditory_cortex.PNG
Hanlon, C., Dowdle, L., & Jones, J. (2016). Biomarkers for success. International Review of Neurobiology, 125–156. https://doi.org/10.1016/bs.irn.2016.06.006
Hickok, G. (2000). Speech perception, conduction aphasia, and the functional neuroanatomy of language. Language and the Brain, 87–104. https://doi.org/10.1016/b978-0123042606/50006-2
Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4(4), 131–138. https://doi.org/10.1016/s1364-6613(00)01463-7
Hickok, G., Erhard, P., Kassubek, J., Helms-Tillery, A., Naeve-Velguth, S., Strupp, J. P., Strick, P. L., & Ugurbil, K. (2000). A functional magnetic resonance imaging study of the role of left posterior superior temporal gyrus in speech production: implications for the explanation of conduction aphasia. Neuroscience Letters, 287(2), 156–160. https://doi.org/10.1016/s0304-3940(00)01143-5
Hoefer, P. F. A. (1965). Cerebral localisation and organisation. Archives of Neurology, 13(4), 451. https://doi.org/10.1001/archneur.1965.00470040117026
Honda, M. (2003). Human Speech Production Mechanisms. NTT Technical Review, 1(2), 24–29.
Kurdiukova, S., & Suntsova, A. (2020). Chapter 5: The Neuropsychological Approach to Speech Development. Journal of Russian & East European Psychology, 57(1), 24–33. https://doi.org/10.1080/10610405.2020.1717850
Houde, J. F., Nagarajan, S. S., Sekihara, K., & Merzenich, M. M. (2002). Modulation of the auditory cortex during speech: an MEG study. Journal of Cognitive Neuroscience, 14(8), 1125–1138. https://doi.org/10.1162/089892902760807140
Howard, M. A., Volkov, I. O., Mirsky, R., Garell, P. C., Noh, M. D., Granner, M., Damasio, H., Steinschneider, M., Reale, R. A., Hind, J. E., & Brugge, J. F. (2000). Auditory cortex on the human posterior superior temporal gyrus. The Journal of comparative neurology, 416(1), 79–92. https://doi.org/10.1002/(sici)1096-9861(20000103)416:1<79::aid-cne6>3.0.co;2-2
Huang, J., Carr, T. H., & Cao, Y. (2001). Comparing cortical activations for silent and overt speech using event-related fMRI. Human Brain Mapping, 15(1), 39–53. https://doi.org/10.1002/hbm.1060
Imada, T., Zhang, Y., Cheour, M., Taulu, S., Ahonen, A., & Kuhl, P. K. (2006). Infant speech perception activates Broca's area: a developmental magnetoencephalography study. NeuroReport, 17(10), 957–962. https://doi.org/10.1097/01.wnr.0000223387.51704.89
Johns, P. (2014). Functional neuroanatomy. Clinical Neuroscience, 27–47. https://doi.org/10.1016/b978-0-443-10321-6.00003-5
Kaas, J. H., & Hackett, T. A. (1998). Subdivisions of auditory cortex and levels of processing in primates. Audiology and Neurotology, 3(2–3), 73–85. https://doi.org/10.1159/000013783
Khalighinejad, B., Patel, P., Herrero, J. L., Bickel, S., Mehta, A. D., & Mesgarani, N. (2021). Functional characterisation of human Heschl's gyrus in response to natural speech. NeuroImage, 235, 118003. https://doi.org/10.1016/j.neuroimage.2021.118003
Klostermann, F., Krugel, L. K., & Ehlen, F. (2013). Functional roles of the thalamus for language capacities. Frontiers in Systems Neuroscience, 7, 32. https://doi.org/10.3389/fnsys.2013.00032
Kurdiukova, S., & Suntsova, A. (2020). Chapter 5: The Neuropsychological Approach to Speech Development. Journal of Russian & East European Psychology, 57(1), 24–33. https://doi.org/10.1080/10610405.2020.1717850
Kurmakaeva, D., Blagovechtchenski, E., Gnedykh, D., Mkrtychian, N., Kostromina, S., & Shtyrov, Y. (2021). Acquisition of concrete and abstract words is modulated by tDCS of Wernicke's area. Scientific Reports, 11(1), 1508. https://doi.org/10.1038/s41598-020-79967-8
Leff, A. P., Schofield, T. M., Crinion, J. T., Seghier, M. L., Grogan, A., Green, D. W., & Price, C. J. (2009). The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: evidence from 210 patients with stroke. Brain, 132(12), 3401–3410. https://doi.org/10.1093/brain/awp273
Levelt, W. J. M., Praamstra, P., Meyer, A. S., Helenius, P., & Salmelin, R. (1998). An MEG study of picture naming. Journal of Cognitive Neuroscience, 10(5), 553–567. https://doi.org/10.1162/089892998562960
Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22(01). https://doi.org/10.1017/s0140525x99001776
López-Bendito, G., & Martini, F. J. (2020). Patterning of thalamus. Patterning and Cell Type Specification in the Developing CNS and PNS, 69–86. https://doi.org/10.1016/b978-0-12-814405-3.00004-7
MacSweeney, M. (2002). Neural systems underlying British sign language and audio-visual english processing in native users. Brain, 125(7), 1583–1593. https://doi.org/10.1093/brain/awf153
Maratsos, M., & Ingram, D. (1993). First language acquisition: method, description, and explanation. Language, 69(2), 372. https://doi.org/10.2307/416542
Max, L., Guenther, F. H., Gracco, V. L., Ghosh, S. S., & Wallace, M. E. (2004). Unstable or insufficiently activated internal models and feedback-biased motor control as sources of dysfluency: a theoretical model of stuttering. Contemporary Issues in Communication Science and Disorders, 31(Spring), 105–122. https://doi.org/10.1044/cicsd_31_s_105
Meekings, S., & Scott, S. K. (2021). Error in the superior temporal gyrus? a systematic review and activation likelihood estimation meta-analysis of speech production studies. Journal of Cognitive Neuroscience, 33(3), 422–444. https://doi.org/10.1162/jocn_a_01661
Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343(6174), 1006–1010. https://doi.org/10.1126/science.1245994
Mesgarani, N., David, S. V., Fritz, J. B., & Shamma, S. A. (2008). Phoneme representation and classification in primary auditory cortex. The Journal of the Acoustical Society of America, 123(2), 899–909. https://doi.org/10.1121/1.2816572
Mesulam, M. M., Rader, B. M., Sridhar, J., Nelson, M. J., Hyun, J., Rademaker, A., Geula, C., Bigio, E. H., Thompson, C. K., Gefen, T.D., Weintraub, S., & Rogalski, E.J. (2018). Word comprehension in temporal cortex and Wernicke area. Neurology, 92(3), e224–e233. https://doi.org/10.1212/wnl.0000000000006788
Moini, J., & Piran, P. (2020). Cerebral cortex. Functional and Clinical Neuroanatomy, 177–240. https://doi.org/10.1016/b978-0-12-817424-1.00006-9
Nath, A., & Beauchamp, M. S. (2011). Dynamic changes in superior temporal sulcus connectivity during perception of noisy audio-visual speech. Journal of Neuroscience, 31(5), 1704–1714. https://doi.org/10.1523/JNEUROSCI.4853-10.2011
Nota, Y. (2004). Brain regions involved in motor control of speech. 2004 by the Acoustical Society of Japan. Retrieved October 7, 2022, from https://www.jstage.jst.go.jp/article/ast/25/4/25_4_286/_article
Ohashi, H., & Ostry, D. J. (2021). Neural development of speech sensorimotor learning. Journal of Neuroscience, 41(18), 4023–4035. https://doi.org/10.1523/jneurosci.2884-20.2021
Ozker, M., Schepers, I. M., Magnotti, J. F., Yoshor, D., & Beauchamp, M. S. (2017). A double dissociation between anterior and posterior superior temporal gyrus for processing audio-visual speech demonstrated by electrocorticography. Journal of Cognitive Neuroscience, 29(6), 1044–1060. https://doi.org/10.1162/jocn_a_01110
Palmer, E. D., Rosen, H. J., Ojemann, J. G., Buckner, R. L., Kelley, W. M., & Petersen, S. E. (2001). An event-related fmri study of overt and covert word stem completion. NeuroImage, 14(1), 182–193. https://doi.org/10.1006/nimg.2001.0779
Paus, T., Perry, D. W., Zatorre, R. J., Worsley, K. J., & Evans, A. C. (1996). modulation of cerebral blood flow in the human auditory cortex during speech: role of motor-to-sensory discharges. European Journal of Neuroscience, 8(11), 2236–2246. https://doi.org/10.1111/j.1460-9568.1996.tb01187.x
Pinker, S. (1984). Language Learnability and Language Development: First Edition (Cognitive Science Series). Harvard University Press.
Price, C. (2011). A generative model of speech production in Broca's and Wernicke's areas. Frontiers in Psychology, 2, 1-8. https://doi.org/10.3389/fpsyg.2011.00237
Price, C. J., Wise, R. J. S., Warburton, E. A., Moore, C. J., Howard, D., Patterson, K., Frackowiak, R. S. J., & Friston, K. J. (1996). Hearing and saying. Brain, 119(3), 919–931. https://doi.org/10.1093/brain/119.3.919
Rangus, I., Fritsch, M., Endres, M., Udke, B., & Nolte, C. H. (2021). Frequency and phenotype of thalamic aphasia. Journal of Neurology, 269(1), 368–376. https://doi.org/10.1007/s00415-021-10640-4
Rasskazova, O., Mooshammer, C., & Fuchs, S. (2019). Temporal coordination of articulatory and respiratory events prior to speech initiation. Interspeech, 884–888. https://doi.org/10.21437/interspeech.2019-2876
Rauschecker, J. P. (2015). Auditory and visual cortex of primates: a comparison of two sensory systems. European Journal of Neuroscience, 41(5), 579–585. https://doi.org/10.1111/ejn.12844
Rivera‐Urbina, G. N., Martínez‐Castañeda, M. F., Núñez‐Gómez, A. M., Molero‐Chamizo, A., Nitsche, M. A., & Alameda‐Bailén, J. R. (2022,). Effects of tDCS applied over the left IFG and pSTG language areas on verb recognition task performance. Psychophysiology, 59, e14134. https://doi.org/10.1111/psyp.14134
Schönwiesner, M., Novitski, N., Pakarinen, S., Carlson, S., Tervaniemi, M., & Näätänen, R. (2007). Heschl's gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. Journal of Neurophysiology, 97(3), 2075–2082. https://doi.org/10.1152/jn.01083.2006
Seldon, H. (1981). Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions. Brain Research, 229(2), 277–294. https://doi.org/10.1016/0006-8993(81)90994-x
Singh, A., Illa, A., & Ghosh, P. K. (2020). A Comparative Study of Estimating Articulatory Movements from Phoneme Sequences and Acoustic Features. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 7334–7338. https://doi.org/10.1109/icassp40776.2020.9053852
Sira, C., & Mateer, C. (2014). Frontal Lobes. Encyclopedia of the Neurological Sciences, 358–365. https://doi.org/10.1016/b978-0-12-385157-4.01148-9
Sobirjonovich, S. I. (2021). Speech Education for Children from 1 To 3 Years of Age. International Journal of Innovative Analyses and Emerging Technology, 1(7), 135-141.
Tatham, M., & Morton, K. (2011). A Guide to Speech Production and Perception. Edinburgh University Press. https://doi.org/10.1515/9780748636532
Tomaiuolo, F., Campana, S., Voci, L., Lasaponara, S., Doricchi, F., & Petrides, M. (2021). The precentral insular cortical network for speech articulation. Cerebral Cortex, 31(8), 3723–3731. https://doi.org/10.1093/cercor/bhab043
Töpper, R., Mottaghy, F. M., Brügmann, M., Noth, J., & Huber, W. (1998). Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke's area. Experimental Brain Research, 121(4), 371–378. https://doi.org/10.1007/s002210050471
Uddin, L. Q., Nomi, J. S., Hébert-Seropian, B., Ghaziri, J., & Boucher, O. (2017). Structure and function of the human insula. Journal of Clinical Neurophysiology, 34(4), 300–306. https://doi.org/10.1097/wnp.0000000000000377
Van Atteveldt, N., Formisano, E., Goebel, R., & Blomert, L. (2004). Integration of Letters and Speech Sounds in the Human Brain. Neuron, 43(2), 271–282. https://doi.org/10.1016/j.neuron.2004.06.025
Wang, Z., Yan, X., Liu, Y., Spray, G. J., Deng, Y., & Cao, F. (2019). Structural and functional abnormality of the putamen in children with developmental dyslexia. Neuropsychologia, 130, 26–37. https://doi.org/10.1016/j.neuropsychologia.2018.07.014
Wang, D., Lipski, W. J., Bush, A., Chrabaszcz, A., Dastolfo-Hromack, C. A., Dickey, M., Fiez, J. A., & Richardson, R. M. (2022). Lateralized and region-specific thalamic processing of lexical status during reading aloud. Journal of Neuroscience, 42(15), 3228–3240. https://doi.org/10.1523/jneurosci.1332-21.2022
Werner, R., Fuchs, S., Trouvain, J., & Möbius, B. (2021). Inhalations in speech: acoustic and physiological characteristics. Interspeech. https://doi.org/10.21437/interspeech.2021-1262
Whiteside, S. P. (1993). Peter B. Denes and Elliot N. Pinson The Speech Chain: The Physics and Biology of Spoken Language, 2nd edition. Oxford: W.H. Freeman and Company, 1993. Pp. 246 Pb. ISBN 0–7167-2344-1. Journal of the International Phonetic Association, 23(2), 98–101. https://doi.org/10.1017/s0025100300004904
Wise, R., Chollet, F., Hadar, U., Friston, K., Hoffner, E., & Frackowiak, R. (1991). Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain, 114(4), 1803–1817. https://doi.org/10.1093/brain/114.4.1803
Wise, R., Greene, J., Büchel, C., & Scott, S. (1999). Brain regions involved in articulation. The Lancet, 353(9158), 1057–1061. https://doi.org/10.1016/s0140-6736(98)07491-1
Wong, P. C., Warrier, C. M., Penhune, V. B., Roy, A. K., Sadehh, A., Parrish, T. B., & Zatorre, R. J. (2007). Volume of left Heschl's gyrus and linguistic pitch learning. Cerebral Cortex, 18(4), 828–836. https://doi.org/10.1093/cercor/bhm115
Yamamoto, A. K., Parker Jones, O., Hope, T. M., Prejawa, S., Oberhuber, M., Ludersdorfer, P., Yousry, T. A., Green, D. W., & Price, C. J. (2019). A special role for the right posterior superior temporal sulcus during speech production. NeuroImage, 203, 116184. https://doi.org/10.1016/j.neuroimage.2019.116184
Yang, J. H., & Kwan, A. C. (2021). Secondary motor cortex: Broadcasting and biasing animal's decisions through long-range circuits. International Review of Neurobiology, 443–470. https://doi.org/10.1016/bs.irn.2020.11.008
Yule, G. (1994). The Study of Language: An Introduction. Cambridge University Press.
Zaidel, E. (2001). Brain Asymmetry. International Encyclopedia of the Social & Behavioral Sciences, 1321–1329. https://doi.org/10.1016/b0-08-043076-7/03548-8
Zevin, J. (2009). Word Recognition. Encyclopedia of Neuroscience, 517–522. https://doi.org/10.1016/b978-008045046-9.01881-7
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Mohammad Jahanaray, Ali Jahanaray, Zahra Zohoorian
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.