Mapping the research landscape on chronic pain and electroencephalography (EEG): a bibliometric analysis

Authors

  • Mazira Mohamad Ghazali 1) Department of Anatomy and Physiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Medical Campus, Jalan Sultan Mahmud, 20400, Kuala Terengganu, Terengganu, Malaysia 2) Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
  • Muhammad Rajaei Ahmad@ Mohd Zain Department of Orthopaedic, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
  • Kamaruddin Ibrahim Department of Anaesthesiology and Intensive Care, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
  • Samhani Ismail Department of Anatomy and Physiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Medical Campus, Jalan Sultan Mahmud, 20400, Kuala Terengganu, Terengganu, Malaysia.

DOI:

https://doi.org/10.31117/neuroscirn.v8i2.396

Keywords:

Chronic pain, EEG, Brainwaves, Bibliometric

Abstract

Chronic pain is a complex and debilitating condition that affects an estimated 1.5 billion individuals worldwide. The impact of chronic pain extends beyond the individual, with significant socioeconomic consequences, including health care costs and decreased performance. Today, electroencephalography (EEG) has become a valuable non-invasive tool in the study of chronic pain, allowing researchers to measure and analyse the brain’s electrical activity in response to pain stimuli. Thus, this bibliometric analysis evaluated the literature on chronic pain and EEG, identified main themes, authors, institutions, author keywords, and publications in the field and assessed the research impact and influence in this study area from 1972 to 2023. First, datasets were obtained from Web of Science (WoS) and Scopus, then analysed using ScientoPy and VOSviewer software. There has been a steady increase in the literature on chronic pain and EEG since 1972. In 2021, a significant number of publications (n = 69) were in WoS. Furthermore, “Neuroscience & Neurology” was the most popular subject matter, with 388 publications. Meanwhile, the top five author keywords associated with this subject were “chronic pain”, “EEG”, “fibromyalgia”, “spinal cord injury”, and “neurofeedback”. The term “machine learning” has garnered significant attention in recent years, particularly in 2022 and 2023. In summary, the trend in chronic pain and EEG research has consistently shown a rise in scholarly interest. These study findings can guide future research efforts, policy-making, and practical measures in diagnosing and managing chronic pain, which can improve patients' well-being and quality of life.

References

Abdullah, K. H. (2021). Mapping of marine safety publications using VOSViewer. ASM Science Journal, 16, 1–9. https://doi.org/10.32802/asmscj.2021.774

Abdullah, K. H., & Sofyan, D. (2023). Machine learning in safety and health research: a scientometric analysis. International Journal of Information Science and Management, 21(1), 17–37. https://doi.org/10.22034/ijism.2022.1977763.0

Ali, S. A., Ghazali, M. M., Aziz, N. a. A., & Nisar, H. (2024). Bibliometric analysis of neurofeedback research from 2000 to 2022. Neuroscience Research Notes, 7(1), 265.1–265.16. https://doi.org/10.31117/neuroscirn.v7i1.265

Apkarian, A. V., Bushnell, M. C., Treede, R., & Zubieta, J. (2005). Human brain mechanisms of pain perception and regulation in health and disease. European Journal of Pain, 9(4), 463. https://doi.org/10.1016/j.ejpain.2004.11.001

Bemani, S., Sarrafzadeh, J., Noorizadeh, S., Talebian, S., Salehi, R., & Zarei, J. (2023). The analysis of spontaneous electroencephalogram (EEG) in chronic low back pain patients compared with healthy subjects. Medical Journal of the Islamic Republic of Iran, 37(1), 999–1007 . https://doi.org/10.47176/mjiri.37.128

Bennett, M. (2010). Neuropathic Pain. Oxford University Press, United Kingdom. https://doi.org/10.1093/med/9780199563678.001.0001

Breivik, H., Collett, B., Ventafridda, V., Cohen, R., & Gallacher, D. (2005). Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. European Journal of Pain, 10(4), 287. https://doi.org/10.1016/j.ejpain.2005.06.009

Burle, B., Spieser, L., Roger, C., Casini, L., Hasbroucq, T., & Vidal, F. (2015). Spatial and temporal resolutions of EEG: Is it really black and white? A scalp current density view. International Journal of Psychophysiology, 97(3), 210–220. https://doi.org/10.1016/j.ijpsycho.2015.05.004

Burroughs, R. D. (2011). Quantitative EEG analysis of patients with chronic pain: An exploratory study. University of North Texas, United States. https://digital.library.unt.edu/ark:/67531/metadc103294/m2/1/high_res_d/thesis.pdf

Cohen, S. P., Vase, L., & Hooten, W. M. (2021). Chronic pain: an update on burden, best practices, and new advances. The Lancet, 397(10289), 2082–2097. https://doi.org/10.1016/s0140-6736(21)00393-7

De Vries, M., Wilder-Smith, O., Jongsma, M., Van Den Broeke, E., Arns, M., Van Goor, H., & Van Rijn, C. (2013). Altered resting state EEG in chronic pancreatitis patients: toward a marker for chronic pain. Journal of Pain Research, 2013(6), 815–824. https://doi.org/10.2147/jpr.s50919

Fallon, N., Chiu, Y., Nurmikko, T., & Stancak, A. (2017). Altered theta oscillations in resting EEG of fibromyalgia syndrome patients. European Journal of Pain, 22(1), 49–57. https://doi.org/10.1002/ejp.1076

Hylands-White, N., Duarte, R. V., & Raphael, J. H. (2016). An overview of treatment approaches for chronic pain management. Rheumatology International, 37(1), 29–42. https://doi.org/10.1007/s00296-016-3481-8

Jensen, M. P., Sherlin, L. H., Gertz, K. J., Braden, A. L., Kupper, A. E., Gianas, A., Howe, J. D., & Hakimian, S. (2013). Brain EEG activity correlates of chronic pain in persons with spinal cord injury: clinical implications. Spinal Cord, 51(1), 55–58. https://doi.org/10.1038/sc.2012.84

Kim, J. A., Bosma, R. L., Hemington, K. S., Rogachov, A., Osborne, N. R., Cheng, J. C., Oh, J., Crawley, A. P., Dunkley, B. T., & Davis, K. D. (2018). Neuropathic pain and pain interference are linked to alpha-band slowing and reduced beta-band magnetoencephalography activity within the dynamic pain connectome in patients with multiple sclerosis. Pain, 160(1), 187–197. https://doi.org/10.1097/j.pain.0000000000001391

King, W. (2013). Acute pain, subacute pain, and chronic pain. In Gebhart, G.F. & Schmidt, R.F. (Eds.), Encyclopedia of Pain (pp. 60–63). Springer Berlin Heidelberg, Germany. https://doi.org/10.1007/978-3-642-28753-4_75

May, E. S., Nickel, M. M., Dinh, S. T., Tiemann, L., Heitmann, H., Voth, I., Tölle, T. R., Gross, J., & Ploner, M. (2018). Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients. Human Brain Mapping, 40(1), 293–305. https://doi.org/10.1002/hbm.24373

Meneses, F. M., Queirós, F. C., Montoya, P., Miranda, J. G. V., Dubois-Mendes, S. M., Sá, K. N., Luz-Santos, C., & Baptista, A. F. (2016). Patients with rheumatoid arthritis and chronic pain display enhanced alpha power density at rest. Frontiers in Human Neuroscience, 10, 395. https://doi.org/10.3389/fnhum.2016.00395

Pinheiro, E. S. D. S., De Queirós, F. C., Montoya, P., Santos, C. L., Nascimento, M. a. D., Ito, C. H., Silva, M., Santos, D. B. N., Benevides, S., Miranda, J. G. V., Sá, K. N., & Baptista, A. F. (2016). Electroencephalographic patterns in chronic pain: a systematic review of the literature. PLoS ONE, 11(2), e0149085. https://doi.org/10.1371/journal.pone.0149085

Rajan, J., Gaur, G. S., Shanmugavel, K., & S, A. (2024). Relation between heart rate variability and spectral analysis of electroencephalogram in chronic neuropathic pain patients. Korean Journal of Physiology and Pharmacology, 28(3), 253–264. https://doi.org/10.4196/kjpp.2024.28.3.253

Rodriguez Pabon, C. D., Sánchez-Benitez, J., Ruiz-Rosero, J., & Ramirez-Gonzalez, G. (2020). Coffee crop science metric: A review. Coffee Science, 15, 1–11. https://doi.org/10.25186/.v15i.1693

Rossini, P., Burke, D., Chen, R., Cohen, L., Daskalakis, Z., Di Iorio, R., Di Lazzaro, V., Ferreri, F., Fitzgerald, P., George, Hallett, M., Lefaucheur, J., Langguth, B., Matsumoto, H., Miniussi, C., Nitsche, M., Pascual-Leone, A., Paulus, W., Rossi, S., . . . Ziemann, U. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology, 126(6), 1071–1107. https://doi.org/10.1016/j.clinph.2015.02.001

Ruiz-Rosero, J., Ramirez-Gonzalez, G., & Viveros-Delgado, J. (2019). Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications. Scientometrics, 121(2), 1165–1188. https://doi.org/10.1007/s11192-019-03213-w

Ruiz-Rosero, J., Ramirez-Gonzalez, G., Williams, J., Liu, H., Khanna, R., & Pisharody, G. (2017). Internet of things: a Scientometric review. Symmetry, 9(12), 301. https://doi.org/10.3390/sym9120301

Smith, M. T., & Haythornthwaite, J. A. (2004). How do sleep disturbance and chronic pain inter-relate? Insights from the longitudinal and cognitive-behavioral clinical trials literature. Sleep Medicine Reviews, 8(2), 119–132. https://doi.org/10.1016/s1087-0792(03)00044-3

Spronk, D., Arns, M., Barnett, K., Cooper, N., & Gordon, E. (2010). An investigation of EEG, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: A pilot study. Journal of Affective Disorders, 128(1–2), 41–48. https://doi.org/10.1016/j.jad.2010.06.021

Sweileh, W. M. (2020). Bibliometric analysis of peer-reviewed literature on food security in the context of climate change from 1980 to 2019. Agriculture & Food Security, 9(1), 11. https://doi.org/10.1186/s40066-020-00266-6

Ta Dinh, S., Nickel, M. M., Tiemann, L., May, E. S., Heitmann, H., Hohn, V. D., Edenharter, G., Utpadel-Fischler, D., Tölle, T. R., Sauseng, P., Gross, J., & Ploner, M. (2019). Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. Pain, 160(12), 2751–2765. https://doi.org/10.1097/j.pain.0000000000001666

Villafaina, S., Collado-Mateo, D., Fuentes-García, J. P., Cano-Plasencia, R., & Gusi, N. (2019). Impact of fibromyalgia on alpha-2 EEG power spectrum in the resting condition: a descriptive correlational study. BioMed Research International, 2019, 1–6. https://doi.org/10.1155/2019/7851047

Vos, T., Allen, C., Arora, M., Barber, R. M., Bhutta, Z. A., Brown, A., Carter, A., Casey, D. C., Charlson, F. J., Chen, A. Z., Coggeshall, M., Cornaby, L., Dandona, L., Dicker, D. J., Dilegge, T., Erskine, H. E., Ferrari, A. J., Fitzmaurice, C., Fleming, T., . . . Murray, C. J. L. (2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1545–1602. https://doi.org/10.1016/s0140-6736(16)31678-6

Zis, P., Liampas, A., Artemiadis, A., Tsalamandris, G., Neophytou, P., Unwin, Z., Kimiskidis, V. K., Hadjigeorgiou, G. M., Varrassi, G., Zhao, Y., & Sarrigiannis, P. G. (2022). EEG recordings as biomarkers of pain perception: Where do we stand and where to go? Pain and Therapy, 11(2), 369–380. https://doi.org/10.1007/s40122-022-00372-2

Downloads

Published

2025-04-20

How to Cite

Mohamad Ghazali, M., Ahmad@ Mohd Zain, M. R., Ibrahim, K., & Ismail, S. (2025). Mapping the research landscape on chronic pain and electroencephalography (EEG): a bibliometric analysis. Neuroscience Research Notes, 8(2), 396.1–396.14. https://doi.org/10.31117/neuroscirn.v8i2.396