Altered effective connectivity within the default mode network in kratom (Mitragyna speciosa) users: A resting-state fMRI study

Authors

  • Suzana Mat Isa (1) Department of Neurosciences, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; (4) Imaging Unit, USM Bertam Medical Centre, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia.
  • Aini Ismafairus Abd Hamid (1) Department of Neurosciences, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; (5) Brain and Behaviour Cluster, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
  • Darshan Singh (2) Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
  • Muhamad Zabidi Ahmad (3) Biomedical Imaging Department, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia; (4) Imaging Unit, USM Bertam Medical Centre, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia; (6) Diagnostic Imaging Services, KPJ Perlis Specialist Hospital, 01000 Kangar, Perlis.

DOI:

https://doi.org/10.31117/neuroscirn.v8i3.400

Keywords:

Functional Magnetic Resonance Imaging (fMRI), kratom, resting-state functional magnetic resonance imaging, spectral DCM, Effective connectivity, default mode network, addiction

Abstract

Kratom (Mitragyna speciosa) is a Southeast Asian plant with stimulant and opioid-like properties, traditionally used for its medicinal effects. However, its increasing popularity and potential for dependence raise concerns about its impact on brain function. This study investigated alterations in effective connectivity (EC) within the default mode network (DMN), a network associated with self-related processes, in kratom users compared to healthy controls. Ten regular kratom users (mean age: 27.30 ± 3.97) and seven healthy controls (mean age: 20.72 ± 1.88) underwent resting-state functional magnetic resonance imaging (rs-fMRI). The EC analyses were performed using spectral dynamic causal modelling to examine directional influences between DMN regions. A fully connected model best represented EC in both groups; however, the control group lacked a significant connection between the right inferior parietal cortex (RIPC) and the posterior cingulate cortex (PCC). Kratom users exhibited hyperconnectivity between the medial prefrontal cortex (MPFC) and the left inferior parietal lobule (LIPL) connection compared to controls.  Additionally, negative correlations were identified between the duration of kratom use and connectivity from PCC to RIPC. In contrast, positive correlations were observed between the duration of use and connectivity from RIPC to PCC. These findings suggest that kratom consumption may alter EC within the DMN, particularly the MPFC→LIPL connection, potentially due to chronic intake. This preliminary study provides neuroimaging insights into the effects of kratom on the brain and contributes to ongoing discussions regarding its potential for dependence and therapeutic applications.

References

Abdul Rahman, M. R., Abd Hamid, A. I., Noh, N. A., Idris, Z., & Abdullah, J. M. (2020). The effective connectivity of the default mode network following moderate traumatic brain injury. Journal of Physics: Conference Series, 1497(1), 012008. https://doi.org/10.1088/1742-6596/1497/1/012008

Abdullah, M. F. I. L, & Singh, D. (2021). The adverse cardiovascular effects and cardiotoxicity of kratom (Mitragyna speciosa Korth.): A comprehensive review. Frontiers in Pharmacology, 12, 1–12. https://doi.org/10.3389/fphar.2021.726003

Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316(1), 29–52. https://doi.org/10.1111/nyas.12360

Bergen-Cico, D., & MacClurg, K. (2016). Kratom (Mitragyna speciosa) use, addiction potential, and legal status. In V. R. Preedy (Ed.), Neuropathology of drug addictions and substance misuse (Vol. 3, pp. 903–911). Academic Press. https://doi.org/10.1016/B978-0-12-800634-4.00089-5

Choo, L. L., Zahari, M. M. A., Choy, S. K., Rahim, N. A., & Rashid, R. A. (2022). The Prevalence and Psychosocial Correlates of Ketum (Mitragyna speciosa) use among individuals on methadone maintenance therapy programme in Hospital Taiping, Malaysia. Healthcare, 10(4), 746. https://doi.org/10.3390/healthcare10040746

Compton, D. M., Garcia, C., Kamaratos, A. V, Johnson, B. G., & Wedge, T. (2014). An examination of the consequences of chronic exposure to Mitragyna speciosa during adolescence on learning and memory in adulthood. The Journal of Phytopharmacology, 3(5), 300-309. https://doi.org/10.31254/phyto.2014.3501

Di, X., & Biswal, B. B. (2014). Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging. NeuroImage, 86, 53–59. https://doi.org/10.1016/j.neuroimage.2013.07.071

Esménio, S., Soares, J. M., Oliveira-Silva, P., Zeidman, P., Razi, A., Gonçalves, Ó. F., Friston, K., & Coutinho, J. (2019). Using resting-state DMN effective connectivity to characterize the neurofunctional architecture of empathy. Scientific Reports, 9(1), 2603. https://doi.org/10.1038/s41598-019-38801-6

Farris, M., Leong, I., Abdullah, B., Singh, D., Narayanan, S., Rahim, A. A., & Vicknasingam, B. (2019). Socio-demographic characteristics, kratom use and quality of life (QoL) of regular kratom (Mitragyna speciosa Korth.) users. Malaysian Journal of Medicine and Health Sciences, 15(3), 4-9.

Friston, K. J., Ashburner, J., Kiebel, S. J., Nichols, T. E., & Penny, W. D. (2007). Statistical parametric mapping: The analysis of functional brain images. Academic Press. https://doi.org/10.1016/B978-0-12-372560-8.X5000-1

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258. https://doi.org/10.1073/pnas.0135058100

Grundmann, O., Hendrickson, R. G., & Greenberg, M. I. (2023). Kratom: History, pharmacology, current user trends, adverse health effects and potential benefits. Disease-a-Month, 69(6), 101442. https://doi.org/10.1016/j.disamonth.2022.101442

Hossain, R., Sultana, A., Nuinoon, M., Noonong, K., Tangpong, J., Hossain, K. H., & Rahman, M. A. (2023). a critical review of the neuropharmacological effects of kratom: An insight from the functional array of identified natural compounds. Molecules, 28(21), 7372. https://doi.org/10.3390/molecules28217372

Ilmie, M. U., Mansor, S. M., & Abdullah, J. M. (2015). Behavioural and electrophysiological evidence of impaired learning and memory in male Sprague Dawley rats following subchronic exposure to standardised methanolic extract of Mitragyna speciosa Korth. Malaysian Journal of Medical Sciences, 22(8), 45–51.

Jobson, D. D., Hase, Y., Clarkson, A. N., & Kalaria, R. N. (2021). The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Communications, 3(3), fcab125. https://doi.org/10.1093/braincomms/fcab125

Khalil, S., Halim, @, Ahmad, R., Alida, S., & Abdullah, J. (2020). Enforcement status of the Poison Act 1952 against offences related to kratom (Mitragyna speciosa Korth) misuse in Malaysia. UUM Journal of Legal Studies, 11(1), 75-93.

Kim, S., & Lee, D. (2011). Prefrontal cortex and impulsive decision making. Biological Psychiatry, 69(12), 1140–1146. https://doi.org/10.1016/j.biopsych.2010.07.005

Koob, G. F., & Volkow, N. D. (2016). Neurobiology of addiction: A neurocircuitry analysis. The Lancet Psychiatry, 3(8), 760–773. https://doi.org/10.1016/S2215-0366(16)00104-8

Loganathan, K., & Ho, E. T. W. (2020). Neurocognitive interventions based on network neuroscience may break the cycle of drug addiction relapse. Neuroscience Research Notes, 3(2), 15–22. https://doi.org/10.31117/neuroscirn.v3i2.48

Luijten, M., Machielsen, M. W. J., Veltman, D. J., Hester, R., de Haan, L., & Franken, I. H. A. (2014). Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. Journal of Psychiatry and Neuroscience, 39(3), 149–169. https://doi.org/10.1503/jpn.130052

Ma, N., Liu, Y., Li, N., Wang, C. X., Zhang, H., Jiang, X. F., Xu, H. S., Fu, X. M., Hu, X., & Zhang, D. R. (2010). Addiction related alteration in resting-state brain connectivity. NeuroImage, 49(1), 738–744. https://doi.org/10.1016/j.neuroimage.2009.08.037

Ma, X., Qiu, Y., Tian, J., Wang, J., Li, S., Zhan, W., Wang, T., Zeng, S., Jiang, G., & Xu, Y. (2015). Aberrant default-mode functional and structural connectivity in heroin-dependent individuals. PLoS ONE, 10(4), e0120861. https://doi.org/10.1371/journal.pone.0120861

Molnar-Szakacs, I., & Uddin, L. Q. (2013). Self-processing and the default mode network: Interactions with the mirror neuron system. Frontiers in Human Neuroscience, 7, 571. https://doi.org/10.3389/fnhum.2013.00571

Nawi, M., Hamid, A., & Marzuki, A. (2020). Effective connectivity of a default mode network in human brain: In search of a dominant node using spectral dynamic causal modeling. Physics and Technology in Medicine Publisher: Malaysian Association of Medical Physics, 1(1), 1–14.

Numssen, O., Bzdok, D., & Hartwigsen, G. (2021). Functional specialization within the inferior parietal lobes across cognitive domains. ELife, 10, e63591. https://doi.org/10.7554/eLife.63591

Penny, W. D., Stephan, K. E., Mechelli, A., & Friston, K. J. (2004). Comparing dynamic causal models. NeuroImage, 22(3), 1157–1172. https://doi.org/10.1016/j.neuroimage.2004.03.026

Sharp, J. L., Pearson, T., & Smith, M. A. (2022). Sex differences in opioid receptor mediated effects: Role of androgens. Neuroscience and Biobehavioral Reviews, 134, 104522. https://doi.org/10.1016/j.neubiorev.2022.104522

Singh, D., Chye, Y., Suo, C., Yücel, M., Grundmann, O., Ahmad, M. Z., Ho, E. T. W., Mansor, S. M., Yusof, S. R., McCurdy, C. R., Mϋller, C., & Vicknassingam, B. (2018). Brain magnetic resonance imaging of regular kratom (Mitragyna speciosa Korth.) users: A preliminary study. Malaysian Journal of Medicine and Health Sciences, 14(Sup 1), 65–70.

Singh, D., Müller, C. P., & Vicknasingam, B. K. (2014). Kratom (Mitragyna speciosa) dependence, withdrawal symptoms and craving in regular users. Drug and Alcohol Dependence, 139, 132–137. https://doi.org/10.1016/j.drugalcdep.2014.03.017

Singh, D., Murugaiyah, V., Hamid, S. B. S., Kasinather, V., Chan, M. S. A., Ho, E. T. W., Grundmann, O., Chear, N. J. Y., & Mansor, S. M. (2018a). Assessment of gonadotropins and testosterone hormone levels in regular Mitragyna speciosa (Korth.) users. Journal of Ethnopharmacology, 221, 30–36. https://doi.org/10.1016/j.jep.2018.04.005

Singh, D., Narayanan, S., Müller, C. P., Swogger, M. T., Chear, N. J. Y., Dzulkapli, E. B., Yusoff, N. S. M., Ramachandram, D. S., León, F., McCurdy, C. R., & Vicknasingam, B. (2019). Motives for Using Kratom (Mitragyna speciosa Korth.) among Regular Users in Malaysia. Journal of Ethnopharmacology, 233, 34–40. https://doi.org/10.1016/j.jep.2018.12.038

Singh, D., Narayanan, S., Müller, C. P., Vicknasingam, B., Yücel, M., Ho, E. T. W., Hassan, Z., & Mansor, S. M. (2018b). Long-term cognitive effects of kratom (Mitragyna speciosa Korth.) use. Journal of Psychoactive Drugs, 51(1), 19–27. https://doi.org/10.1080/02791072.2018.1555345

Singh, D., Narayanan, S., & Vicknasingam, B. (2016). Traditional and non-traditional uses of mitragynine (kratom): A survey of the literature. Brain Research Bulletin, 126, 41–46. https://doi.org/10.1016/j.brainresbull.2016.05.004

Smallwood, J., Bernhardt, B. C., Leech, R., Bzdok, D., Jefferies, E., & Margulies, D. S. (2021). The default mode network in cognition: a topographical perspective. Nature Reviews Neuroscience, 22(8), 503–513. https://doi.org/10.1038/s41583-021-00474-4

Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model selection for group studies. NeuroImage, 46(4), 1004–1017. https://doi.org/10.1016/j.neuroimage.2009.03.025

Suhaimi, F. W., Hassan, Z., Mansor, S. M., & Müller, C. P. (2021). The effects of chronic mitragynine (kratom) exposure on the EEG in rats. Neuroscience Letters, 745, 135632. https://doi.org/10.1016/j.neulet.2021.135632

Sullivan, G. M., & Feinn, R. (2012). Using Effect Size—or Why the P Value Is Not Enough. Journal of Graduate Medical Education, 4(3), 279–282. https://doi.org/10.4300/jgme-d-12-00156.1

Tang, R., Razi, A., Friston, K. J., & Tang, Y. Y. (2016). Mapping smoking addiction using effective connectivity analysis. Frontiers in Human Neuroscience, 10, 195. https://doi.org/10.3389/fnhum.2016.00195

Tarumov, D., Trufanov, A., Chakchir, O., Abdulaev, S. H., Partsernyak, A., Efimtsev, A., Bystrova, D., Kurasov, E., Shamrey, V., & Zhelezniak, I. (2019). Possibilities of resting state functional magnetic resonance imaging in the assessment of the functional state of the brain in patients with opioid addiction. Journal of Psychiatry and Psychiatric Disorders, 3(4), 168–178. https://doi.org/10.26502/jppd.2572-519x0071

Upadhyay, J., Maleki, N., Potter, J., Elman, I., Rudrauf, D., Knudsen, J., Wallin, D., Pendse, G., McDonald, L., Griffin, M., Anderson, J., Nutile, L., Renshaw, P., Weiss, R., Becerra, L., & Borsook, D. (2010). Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. Brain, 133(7), 2098–2114. https://doi.org/10.1093/brain/awq138

Vicknasingam, B., Chooi, W. T., Rahim, A. A., Ramachandram, D., Singh, D., Ramanathan, S., Yusof, S. M., Zainal, H., Murugaiyah, V., Gueorguieva, R., Mansor, M., & Chawarski, M. C. (2020). Kratom and pain tolerance: A randomized, placebo-controlled, double-blind study. Yale Journal of Biology and Medicine, 93(2), 229-238.

Vicknasingam, B., Narayanan, S., Beng, G. T., & Mansor, S. M. (2010). The informal use of ketum (Mitragyna speciosa) for opioid withdrawal in the northern states of peninsular Malaysia and implications for drug substitution therapy. International Journal of Drug Policy, 21(4), 283–288. https://doi.org/10.1016/j.drugpo.2009.12.003

Wahab, N. S. A., Yahya, N., Yusoff, A. N., Zakaria, R., Thanabalan, J., Othman, E., Hong, S. B., Kumar, R. K. A., & Manan, H. A. (2022). Effects of different scan duration on brain effective connectivity among default mode network nodes. Diagnostics, 12(5), 1277. https://doi.org/10.3390/diagnostics12051277

Ye, J. J., Li, W., Zhang, D. S., Li, Q., Zhu, J., Chen, J. J., Li, Y. Bin, Yan, X. J., Liu, J. R., Wei, X., Wang, Y. R., & Wang, W. (2018). Longitudinal behavioral and fMRI-based assessment of inhibitory control in heroin addicts on methadone maintenance treatment. Experimental and Therapeutic Medicine, 16(4), 3202–3210. https://doi.org/10.3892/etm.2018.6571

Yin, Y., He, X., Xu, M., Hou, Z., Song, X., Sui, Y., Liu, Z., Jiang, W., Yue, Y., Zhang, Y., Liu, Y., & Yuan, Y. (2016). Structural and functional connectivity of default mode network underlying the cognitive impairment in late-onset depression. Scientific Reports, 6, 37617. https://doi.org/10.1038/srep37617

Zhang, R., & Volkow, N. D. (2019). Brain default-mode network dysfunction in addiction. NeuroImage, 200, 313–331. https://doi.org/10.1016/j.neuroimage.2019.06.036

Zilverstand, A., Huang, A. S., Alia-Klein, N., & Goldstein, R. Z. (2018). Neuroimaging impaired response inhibition and salience attribution in human drug addiction: A systematic review. Neuron, 98(5), 886–903. https://doi.org/10.1016/j.neuron.2018.03.048

Downloads

Published

2025-09-23

How to Cite

Mat Isa, S., Abd Hamid, A. I., Singh, D., & Ahmad, M. Z. (2025). Altered effective connectivity within the default mode network in kratom (Mitragyna speciosa) users: A resting-state fMRI study. Neuroscience Research Notes, 8(3), 400.1–400.11. https://doi.org/10.31117/neuroscirn.v8i3.400