Electroencephalogram (EEG) based automated detection of mental disorders using artificial intelligence processing pipelines
DOI:
https://doi.org/10.31117/neuroscirn.v8i2.404Keywords:
Bipolar disorder, Schizophrenia, Major depressive disorder, Artificial intelligence, ElectroencephalographyAbstract
Bipolar disorder, major depressive disorder, and schizophrenia often have overlapping symptoms that lead to frequent misdiagnoses. To address the need for an objective, quantitative and accurate tool for diagnosing mental disorders, we developed an AI-based approach using electroencephalography (EEG) signals. Our study analysed data from Seoul National University, including EEG assessments and medical records of 383 subjects: bipolar disorder (n=67), major depressive disorder (n=199), and schizophrenia (n=117). Our method involved three steps: (1) balancing the dataset with SMOTE up-sampling, (2) extracting key features, and (3) employing machine learning and deep learning models for classification. The combination of Independent Component Analysis, ANOVA F-value, and Gradient Boosting yielded the highest accuracy of 96.67% and minimal misclassifications. These results suggest this approach could significantly improve the correct diagnosis of mental disorders, and it is feasible to quantify the EEG signals to obtain an objective computer-aided diagnosis system.
References
Acharya, U. R., Sudarshan, V. K., Adeli, H., Santhosh, J., Koh, J. E. W., & Adeli, A. (2015). Computer-aided diagnosis of depression using EEG signals. European Neurology, 73(5–6), 329–336. https://doi.org/10.1159/000381950
Acharya, U. R., Vinitha Sree, S., Swapna, G., Martis, R. J., & Suri, J. S. (2013). Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems, 45, 147–165. https://doi.org/10.1016/j.knosys.2013.02.014
Alamian, G., Hincapié, A.-S., Combrisson, E., Thiery, T., Martel, V., Althukov, D., & Jerbi, K. (2017). Alterations of intrinsic brain connectivity patterns in depression and bipolar disorders: A critical assessment of magnetoencephalography-based evidence. Frontiers in Psychiatry, 8, 41. https://doi.org/10.3389/fpsyt.2017.00041
Alimardani, F., Cho, J. H., Boostani, R., & Hwang, H. J. (2018). classification of bipolar disorder and schizophrenia using steady-state visual evoked potential based features. IEEE Access, 6, 40379–40388. https://doi.org/10.1109/ACCESS.2018.2854555
Ayano, G., Demelash, S., yohannes, Z., Haile, K., Tulu, M., Assefa, D., Tesfaye, A., Haile, K., Solomon, M., Chaka, A., & Tsegay, L. (2021). Misdiagnosis, detection rate, and associated factors of severe psychiatric disorders in specialized psychiatry centers in Ethiopia. Annals of General Psychiatry, 20(1), 10. https://doi.org/10.1186/s12991-021-00333-7
Benes, F. M. (2000). Emerging principles of altered neural circuitry in schizophrenia. Brain Research Reviews, 31(2), 251–269. https://doi.org/10.1016/S0165-0173(99)00041-7
Biau, G., & Scornet, E. (2016). A random forest guided tour. TEST, 25(2), 197–227. https://doi.org/10.1007/s11749-016-0481-7
Binder, D. K., & Haut, S. R. (2013). Toward new paradigms of seizure detection. Epilepsy & Behavior, 26(3), 247–252. https://doi.org/10.1016/j.yebeh.2012.10.027
Boateng, E. Y., & Abaye, D. A. (2019). A review of the logistic regression model with emphasis on medical research. Journal of Data Analysis and Information Processing, 7(4), 4. https://doi.org/10.4236/jdaip.2019.74012
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953
Crespi, B., & Badcock, C. (2008). Psychosis and autism as diametrical disorders of the social brain. The Behavioral and Brain Sciences, 31(3), 241–261. https://doi.org/10.1017/S0140525X08004214
Derrick, M. B., Jeremy, G., & Amedeo D. A., (2019). Commercial wireless versus standard stationary EEG systems for personalized emotional brain-computer interfaces: A preliminary reliability check. Neuroscience Research Notes, 2(1), 7-15. https://doi.org/10.31117/neuroscirn.v2i1.21
Diagnostic and Statistical Manual of Mental Disorders | Psychiatry Online. (n.d.). Retrieved August 20, 2024, from https://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596
El Gohary, M. I., Al Zohairy, T. A., Eissa, A. M., El Deghaidy, S., & Hussein, H. M. (2016). An intelligent system for diagnosis schizophrenia and bipolar diseases based on support vector machine with different kernels. International Journal of Engineering and Applied Sciences, 3(10), 36–40.
Elrahman, S. M. A., & Abraham, A. (2013). A review of class imbalance problem. Journal of Networking and Innovative Computing, 1, 332–340.
Hébert, M., Mérette, C., Gagné, A.-M., Paccalet, T., Moreau, I., Lavoie, J., & Maziade, M. (2020). The electroretinogram may differentiate schizophrenia from bipolar disorder. Biological Psychiatry, 87(3), 263–270. https://doi.org/10.1016/j.biopsych.2019.06.014
ICD-11 for Mortality and Morbidity Statistics. (n.d.). Retrieved August 20, 2024, from https://icd.who.int/browse/2024-01/mms/en#334423054
Khodayari-Rostamabad, A., Reilly, J. P., Hasey, G., deBruin, H., & MacCrimmon, D. (2010). Diagnosis of psychiatric disorders using EEG data and employing a statistical decision model. Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010, 4006–4009. https://doi.org/10.1109/IEMBS.2010.5627998
Kopanska, M., Ochojska, D., Dejnowicz-Velitchkov, A., & Banaś-Ząbczyk, A. (2022). Quantitative electroencephalography (QEEG) as an innovative diagnostic tool in mental disorders. International Journal of Environmental Research and Public Health, 19(4), 2465. https://doi.org/10.3390/ijerph19042465
Krishnan, P. T., Joseph Raj, A. N., Balasubramanian, P., & Chen, Y. (2020). Schizophrenia detection using Multivariate Empirical Mode Decomposition and entropy measures from multichannel EEG signal. Biocybernetics and Biomedical Engineering, 40(3), 1124–1139. https://doi.org/10.1016/j.bbe.2020.05.008
Kusuma, S. A., & Konginan, A. (2024). The benefits of quantitative electroencephalogram (QEGG) in depression. Journal of Medicinal and Pharmaceutical Chemistry Research, 6(11), 1662-1676. https://doi.org/10.48309/jmpcr.2024.449927.1156
Laursen, T. M., Agerbo, E., & Pedersen, C. B. (2009). Bipolar disorder, schizoaffective disorder, and schizophrenia overlap. The Journal of Clinical Psychiatry, 70(10), 1432–1438. https://doi.org/10.4088/jcp.08m04807
Lei, L., Liu, Z., Zhang, Y., Guo, M., Liu, P., Hu, X., Yang, C., Zhang, A., Sun, N., Wang, Y., & Zhang, K. (2022). EEG microstates as markers of major depressive disorder and predictors of response to SSRIs therapy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 116, 110514. https://doi.org/10.1016/j.pnpbp.2022.110514
Lei, Y., Belkacem, A. N., Wang, X., Sha, S., Wang, C., & Chen, C. (2022). A convolutional neural network-based diagnostic method using resting-state electroencephalograph signals for major depressive and bipolar disorders. Biomedical Signal Processing and Control, 72, 103370. https://doi.org/10.1016/j.bspc.2021.103370
Lublóy, Á., Keresztúri, J. L., Németh, A., & Mihalicza, P. (2020). Exploring factors of diagnostic delay for patients with bipolar disorder: A population-based cohort study. BMC Psychiatry, 20(1), 75. https://doi.org/10.1186/s12888-020-2483-y
Luján, M. Á., Sotos, J. M., Aranda, A. T., & Borja, A. L. (2022). EEG based schizophrenia and bipolar disorder classification by means of deep learning methods. Journal of Biomedical Engineering and Biosciences, 9(1), 01–05. https://doi.org/10.11159/jbeb.2022.001
Mahato, S., & Paul, S. (2019). Electroencephalogram (EEG) signal analysis for diagnosis of major depressive disorder (MDD): A review. In V. Nath & J. K. Mandal (Eds.), Nanoelectronics, circuits and communication systems (pp. 323–335). Springer Singapore.
Mental disorders. (n.d.). Retrieved October 20, 2023, from https://www.who.int/news-room/fact-sheets/detail/mental-disorders
Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7, 21. https://doi.org/10.3389/fnbot.2013.00021
Nur, S. M. N., Nurul, H. A. H. M., Nur, A. P. R., Thomas, J. J., Mohamad, A. F., & Zurina, H. (2022). Automated classification of eight different Electroencephalogram (EEG) bands using hybrid of Fast Fourier Transform (FFT) with machine learning methods. Neuroscience Research Notes, 5(1), 1-12. https://doi.org/10.31117/neuroscirn.v5i1.116
Park, S. M., Jeong, B., Oh, D. Y., Choi, C. H., Jung, H. Y., Lee, J. Y., Lee, D., & Choi, J. S. (2021). Identification of major psychiatric disorders from resting-state electroencephalography using a machine learning approach. Frontiers in Psychiatry, 12. https://www.frontiersin.org/articles/10.3389/fpsyt.2021.707581
Peterson, L. (2009). K-nearest neighbor. Scholarpedia, 4, 1883. https://doi.org/10.4249/scholarpedia.1883
Popa, L. L., Dragos, H., Pantelemon, C., Rosu, O. V., & Strilciuc, S. (2020). The role of quantitative EEG in the diagnosis of neuropsychiatric disorders. Journal of Medicine and Life, 13(1), 8-15. https://doi.org/10.25122/jml-2019-0085
Sanchez, M. M., Borden, L., Alam, N., Noroozi, A., Ravan, M., Flor-Henry, P., & Hasey, G. (2022). A machine learning algorithm to discriminating between bipolar and major depressive disorders based on resting EEG Data. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2022, 2635–2638. https://doi.org/10.1109/EMBC48229.2022.9871453
Shah, S. J. H., Albishri, A., Kang, S. S., Lee, Y., Sponheim, S. R., & Shim, M. (2023). ETSNet: A deep neural network for EEG-based temporal–spatial pattern recognition in psychiatric disorder and emotional distress classification. Computers in Biology and Medicine, 158, 106857. https://doi.org/10.1016/j.compbiomed.2023.106857
Tm, L., E, A., & Cb, P. (2009). Bipolar disorder, schizoaffective disorder, and schizophrenia overlap: A new comorbidity index. The Journal of Clinical Psychiatry, 70(10). https://doi.org/10.4088/JCP.08m04807
Turner, R. P. (2021). Clinical application of combined EEG-qEEG functional neuroimaging in the practice of pediatric neuroscience: A personal perspective. Clinical EEG and Neuroscience, 52(2), 126-135. https://doi.org/10.1177/155005942098241
Uhrig, R. E. (1995). Introduction to artificial neural networks. Proceedings of IECON ’95 - 21st Annual Conference on IEEE Industrial Electronics, 1, 33–37. https://doi.org/10.1109/IECON.1995.483329
Vellante, F., Ferri, F., Baroni, G., Croce, P., Migliorati, D., Pettoruso, M., De Berardis, D., Martinotti, G., Zappasodi, F., & Giannantonio, M. D. (2020). Euthymic bipolar disorder patients and EEG microstates: A neural signature of their abnormal self-experience? Journal of Affective Disorders, 272, 326–334. https://doi.org/10.1016/j.jad.2020.03.175
Zhao, Z., Shen, H., Hu, D., & Zhang, K. (2023). SE-1DCNN-LSTM: A deep learning framework for EEG-based automatic diagnosis of major depressive disorder and bipolar disorder. In X. Ying (Ed.), Human brain and artificial intelligence (pp. 60–72). Springer Nature. https://doi.org/10.1007/978-981-19-8222-4_6
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Lua Ngo, Anh Le, Khanh Ho, Thao Le, Nhu Nguyen, Suong Nguyen, Dung Duong, Huong Ha

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.