Default mode network perturbations in Alzheimer's disease: an fMRI study in Klang Valley, Malaysia
DOI:
https://doi.org/10.31117/neuroscirn.v7i1.284Keywords:
Alzheimer's disease, Voxel-based morphometry, Seed-based analysis, Grey matter volume, Fault mode networkAbstract
The default mode network (DMN) is a large neural network that has a significant correlation with Alzheimer's disease (AD). Grey matter volume (GMV) and functional connectivity (FC) involving the regions of the DMN have been noted to differ significantly between AD and healthy older adults. Nevertheless, there is a paucity of data on the structural and functional changes in the DMN of AD patients in Malaysia. We conducted a cross-sectional study in Klang Valley, Malaysia, to evaluate AD subjects compared to healthy controls (HC) using a resting-state functional MRI (rs-fMRI) experiment. We recruited 22 subjects (AD=11, HC=11) and conducted neuropsychological tests such as the Montreal Cognitive Assessment (MoCA), Mini Mental State Examination (MMSE), and Clinical Dementia Rating (CDR). The subjects then underwent rs-fMRI scans, and subsequently, we quantitatively analysed the GMV by Voxel based Morphometry (VBM) using the structural data. We also utilised the CONN toolbox on Statistical Parametric Mapping (SPM) software to evaluate the FC and activation of the nodes of the DMN. In comparison with the HC group, the AD group demonstrated a reduction in GMV in the right and left inferior temporal gyrus, left superior frontal gyrus, right superior frontal gyrus medial segment, right gyrus rectus, right temporal lobe, left putamen, and right precuneus. Moreover, there was a significant decrease in the FC of the nodes of the DMN noted on rs-fMRI (cluster-size corrected p<0.05). In particular, the precuneus and anterior cingulate cortex had decreased FC in AD compared to HC. Hence, structural and resting-state fMRI can detect distinct imaging biomarkers of AD based on GMV and DMN functional connectivity profiles. This tool can be used as a non-invasive tool for improving the feature detection and diagnosis of AD in the Malaysian population.
References
Agosta, F., Pievani, M., Geroldi, C., Copetti, M., Frisoni, G. B. & Filippi, M. (2012). Resting state fMRI in Alzheimer's disease: beyond the default mode network. Neurobiology of Aging, 33(8), 15641578. https://doi.org/10.1016/j.neurobiolaging.2011.06.007
Alexander-Bloch, A., Giedd, J. N. & Bullmore, E. (2013). Imaging structural co-variance between human brain regions. Nature Reviews Neuroscience, 14(5), 322–336. https://doi.org/10.1038/nrn3465
Azmi, M., Saripan, M., Nordin, A., Saad, F. A., Aziz, S. A., Adnan, W. W. & the Alzheimer’s Disease Neuroimaging Initiative. (2017). 18F-FDG PET brain images as features for Alzheimer classification. Radiation Physics and Chemistry, 137, 135–143. https://doi.org/10.1016/j.radphyschem.2016.08.028
Chan, E., Altendorff, S., Healy, C., Werring, D. J. & Cipolotti, L. (2017). The test accuracy of the Montreal Cognitive Assessment (MoCA) by stroke lateralisation. Journal of the Neurological Sciences, 373, 100–104. https://doi.org/10.1016/j.jns.2016.12.028
Cheah, W. K., Teh, H. L., Huang, D. X. H., Ch'ng, A. S. H., Choy, M. P., Teh, E. E. & Looi, I. (2014). Validation of Malay version of Montreal cognitive assessment in patients with cognitive impairment. Clinical Medicine Research, 3(3), 56–60. https://doi.org/10.11648/j.cmr.20140303.11
Chen, J. J., Uthayakumar, B. & Hyder, F. (2022). Mapping oxidative metabolism in the human brain with calibrated fMRI in health and disease. Journal of Cerebral Blood Flow & Metabolism, 42(7), 1139–1162. https://doi.org/10.1177%2F0271678X221077338
Connolly, C. G., Bell, R. P., Foxe, J. J. & Garavan, H. (2013). Dissociated grey matter changes with prolonged addiction and extended abstinence in cocaine users. PLoS One, 8(3), e59645. https://doi.org/10.1371/journal.pone.0059645
Cui, Y., Liu, Y., Yang, C., Cui, C., Jing, D., Zhang, X., Chen, Y., Li, B., Liang, Z., & Chen, K. (2022). Brain structural and functional anomalies associated with simultanagnosia in patients with posterior cortical atrophy. Brain Imaging and Behavior, 16(3), 1148–1162. https://doi.org/10.1007%2Fs11682-021-00568-8
Ersche, K. D., Williams, G. B., Robbins, T. W. & Bullmore, E. T. (2013). Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Current Opinion in Neurobiology, 23(4), 615–624. https://doi.org/10.1016/j.conb.2013.02.017
Ferreira, L. K., Diniz, B. S., Forlenza, O. V., Busatto, G. F. & Zanetti, M. V. (2011). Neurostructural predictors of Alzheimer's disease: a meta-analysis of VBM studies. Neurobiology of Aging, 32(10), 1733–1741. https://doi.org/10.1016/j.neurobiolaging.2009.11.008
Folstein, M. F., Folstein, S. E. & McHugh, P. R. (1975). "Mini-mental state": a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6
Frisoni, G., Testa, C., Zorzan, A., Sabattoli, F., Beltramello, A., Soininen, H. & Laakso, M. (2002). Detection of grey matter loss in mild Alzheimer's disease with voxel based morphometry. Journal of Neurology, Neurosurgery & Psychiatry, 73(6), 657–664.
Guo, Y., Chen, Z. & Feng, T. (2017). Neural substrates underlying balanced time perspective: A combined voxel-based morphometry and resting-state functional connectivity study. Behavioural Brain Research, 332, 237–242. https://doi.org/10.1016/j.bbr.2017.06.005
Harding, S., Byles, J., Peng, D., Umranikar, J. & Mizuta, K. (2017). Dementia in the Asia Pacific Region. Innovation in Aging, 1(Suppl 1), 1303. https://doi.org/10.1093%2Fgeroni%2Figx004.4769
He, Q., Turel, O. & Bechara, A. (2017). Brain anatomy alterations associated with Social Networking Site (SNS) addiction. Scientific Reports, 7, 45064. https://doi.org/10.1038/srep45064
Hoflich, A., Ganger, S., Tik, M., Hahn, A., Kranz, G. S., Vanicek, T., Spies, M., Kraus, C., Windischberger, C., Kasper, S., Winkler, D. & Lanzenberger, R. (2017). Imaging the neuroplastic effects of ketamine with VBM and the necessity of placebo control. Neuroimage, 147, 198–203. https://doi.org/10.1016/j.neuroimage.2016.12.032
Ibrahim, B., Suppiah, S., Ibrahim, N., Mohamad, M., Hassan, H. A., Nasser, N. S., & Saripan, M. I. (2021). Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer's disease and mild cognitive impairment: A systematic review. Human Brain Mapping, 42(9), 2941–2968. https://doi.org/10.1002/hbm.25369
Ibrahim, N. M., Shohaimi, S., Chong, H.-T., Rahman, A. H. A., Razali, R., Esther, E. & Basri, H. B. (2009). Validation study of the Mini-Mental State Examination in a Malay-speaking elderly population in Malaysia. Dementia and Geriatri Cognitive Disorders, 27(3), 247–253. https://doi.org/10.1159/000203888
Ikeda, S., Takeuchi, H., Taki, Y., Nouchi, R., Yokoyama, R., Nakagawa, S., Sekiguchi, A., Iizuka, K., Hanawa, S., Araki, T., Miyauchi, C. M., Sakaki, K., Nozawa, T., Yokota, S., Magistro, D. & Kawashima, R. (2019). Neural substrates of self- and external-preoccupation: A voxel-based morphometry study. Brain and Behavior, 9(6), e01267. https://doi.org/10.1002/brb3.1267
Kiesow, H., Uddin, L. Q., Bernhardt, B. C., Kable, J. & Bzdok, D. (2021). Dissecting the midlife crisis: disentangling social, personality and demographic determinants in social brain anatomy. Communications Biology, 4(1), 728. https://doi.org/10.1038/s42003-021-02206-x
Ko, C. H., Hsieh, T. J., Wang, P. W., Lin, W. C., Yen, C. F., Chen, C. S. & Yen, J. Y. (2015). Altered gray matter density and disrupted functional connectivity of the amygdala in adults with Internet gaming disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 57, 185–192. https://doi.org/10.1016/j.pnpbp.2014.11.003
Li, J., Wang, Y., Xu, Z., Liu, T., Zang, X., Li, M. & Ma, L. (2019). Whole-brain morphometric studies in alcohol addicts by voxel-based morphometry. Annals of Translational Medicine, 7(22), 635. https://doi.org/10.21037/atm.2019.10.90
Liu, Y., Yu, C., Zhang, X., Liu, J., Duan, Y., Alexander-Bloch, A. F., Liu, B., Jiang, T. & Bullmore, E. (2014). Impaired long distance functional connectivity and weighted network architecture in Alzheimer's disease. Cerebral Cortex, 24(6), 1422–1435. https://doi.org/10.1093/cercor/bhs410
Lukito, S., Norman, L., Carlisi, C., Radua, J., Hart, H., Simonoff, E. & Rubia, K. (2020). Comparative meta-analyses of brain structural and functional abnormalities during cognitive control in attention-deficit/hyperactivity disorder and autism spectrum disorder. Psychological Medicine, 50(6), 894–919. https://doi.org/10.1017/S0033291720000574
Lv, H., Wang, Z., Tong, E., Williams, L. M., Zaharchuk, G., Zeineh, M., Goldstein-Piekarski, A. N., Ball, T. M., Liao, C. & Wintermark, M. (2018). Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know. American Journal of Neuroradiology, 39(8), 1390–1399. https://doi.org/10.3174/ajnr.A5527
Morris, J. C., Edland, S., Clark, C., Galasko, D., Koss, E., Mohs, R., Van Belle, G., Fillenbaum, G. & Heyman, A. (1993). The Consortium to Establish a Registry for Alzheimer's Disease (CERAD): Part IV. Rates of cognitive change in the longitudinal assessment of probable Alzheimer's disease. Neurology, 43(12), 2457–2457. https://doi.org/10.1212/wnl.43.12.2457
Park, J. E., Park, B., Kim, S. J., Kim, H. S., Choi, C. G., Jung, S. C., Oh, J. Y., Lee, J. H., Roh, J. H., Shim, W. H., & Alzheimer's Disease Neuroimaging, I. (2017). Improved Diagnostic Accuracy of Alzheimer's Disease by Combining Regional Cortical Thickness and Default Mode Network Functional Connectivity: Validated in the Alzheimer's Disease Neuroimaging Initiative Set. Korean Journal of Radiology, 18(6), 983–991. https://doi.org/10.3348/kjr.2017.18.6.983
Piersson, A. D., Ibrahim, B., Suppiah, S., Mohamad, M., Hassan, H. A., Omar, N. F., Ibrahim, M. I., Yusoff, A. N., Ibrahim, N., Saripan, M. I. & Razali, R. M. (2021). Multiparametric MRI for the improved diagnostic accuracy of Alzheimer's disease and mild cognitive impairment: Research protocol of a case-control study design. PLoS One, 16(9), e0252883. https://doi.org/10.1371/journal.pone.0252883
Rankin, K. P., Toller, G., Gavron, L., La Joie, R., Wu, T., Shany-Ur, T., Callahan, P., Krassner, M., Kramer, J. H. & Miller, B. L. (2021). Social behavior observer checklist: patterns of spontaneous behaviors differentiate patients with neurodegenerative disease from healthy older adults. Frontiers in Neurology, 12, 683162. https://doi.org/10.3389/fneur.2021.683162
Rashid, A. A., Suppiah, S., Nasser, N. S., Sharifat, H., Mohamad, M., Loh, J. L., Ibrahim, B., Ibrahim, N. S. N., Azmi, N. H. M., & Rahim, E. A. (2021). The neurobiology of smartphone addiction in emerging adults evaluated using brain morphometry and resting-state functional MRI. Neuroscience Research Notes, 4(4), 19–28. https://doi.org/10.31117/neuroscirn.v4i4.107
Razali, R., Jean-Li, L., Jaffar, A., Ahmad, M., Shah, S. A., Ibrahim, N., Din, N. C., Jaafar, N. R. N., Midin, M. & Sidi, H. (2014). Is the Bahasa Malaysia version of the Montreal Cognitive Assessment (MoCA-BM) a better instrument than the Malay version of the Mini Mental State Examination (M-MMSE) in screening for mild cognitive impairment (MCI) in the elderly? Comprehensive Psychiatry, 55, S70–S75. https://doi.org/10.1016/j.comppsych.2013.04.010
Ribeiro, L. G. & Busatto Filho, G. (2016). Voxel-based morphometry in Alzheimers disease and mild cognitive impairment: Systematic review of studies addressing the frontal lobe. Dementia & Neuropsychologia, 10, 104–112. https://doi.org/10.1590/S1980-5764-2016DN1002006
Rolls, E. T., Cheng, W., Du, J., Wei, D., Qiu, J., Dai, D., Zhou, Q., Xie, P. & Feng, J. (2020). Functional connectivity of the right inferior frontal gyrus and orbitofrontal cortex in depression. Social Cognitive and Affective Neuroscience, 15(1), 75–86. https://doi.org/10.1093%2Fscan%2Fnsaa014
Rubinov, M. & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
Shen, J., Qin, W., Xu, Q., Xu, L., Xu, J., Zhang, P., Liu, H., Liu, B., Jiang, T. & Yu, C. (2017). Modulation of APOE and SORL1 genes on hippocampal functional connectivity in healthy young adults. Brain Structure and Function, 222(6), 2877–2889. https://doi.org/10.1007/s00429-017-1377-3
Shiino, A., Watanabe, T., Maeda, K., Kotani, E., Akiguchi, I., & Matsuda, M. (2006). Four subgroups of Alzheimer's disease based on patterns of atrophy using VBM and a unique pattern for early onset disease. Neuroimage, 33(1), 17–26. https://doi.org/10.1016/j.neuroimage.2006.06.010
Smith, T., Gildeh, N., & Holmes, C. (2007). The Montreal Cognitive Assessment: validity and utility in a memory clinic setting. The Canadian Journal of Psychiatry, 52(5), 329–332. https://doi.org/10.1177/070674370705200508
Soman, S. M., Raghavan, S., Rajesh, P., Mohanan, N., Thomas, B., Kesavadas, C. & Menon, R. N. (2020). Does resting state functional connectivity differ between mild cognitive impairment and early Alzheimer's dementia? Journal of the Neurological Sciences, 418, 117093. https://doi.org/10.1016/j.jns.2020.117093
Stenger, J. E., Lobachev, K. S., Gordenin, D., Darden, T. A., Jurka, J. & Resnick, M. A. (2001). Biased distribution of inverted and direct Alus in the human genome: implications for insertion, exclusion, and genome stability. Genome Research, 11(1), 12–27. https://doi.org/10.1101/gr.158801
Su, J., Huang, Q., Ren, S., Xie, F., Zhai, Y., Guan, Y., Liu, J. & Hua, F. (2019). Altered Brain Glucose Metabolism Assessed by (18)F-FDG PET Imaging Is Associated with the Cognitive Impairment of CADASIL. Neuroscience, 417, 35–44. https://doi.org/10.1016/j.neuroscience.2019.07.048
Suckling, J. & Nestor, L. J. (2017). The neurobiology of addiction: the perspective from magnetic resonance imaging present and future. Addiction, 112(2), 360–369. https://doi.org/10.1111/add.13474
Szabo-Reed, A. N., Vidoni, E., Binder, E. F., Burns, J., Cullum, C. M., Gahan, W. P., Gupta, A., Hynan, L. S., Kerwin, D. R., Rossetti, H., Stowe, A. M., Vongpatanasin, W., Zhu, D. C., Zhang, R. & Keller, J. N. (2019). Rationale and methods for a multicenter clinical trial assessing exercise and intensive vascular risk reduction in preventing dementia (rrAD Study). Contemporary Clinical Trials, 79, 44–54. https://doi.org/10.1016/j.cct.2019.02.007
Takamiya, A., Vande Casteele, T., Koole, M., De Winter, F.-L., Bouckaert, F., Van den Stock, J., Sunaert, S., Dupont, P., Vandenberghe, R. & Van Laere, K. (2021). Lower regional gray matter volume in the absence of higher cortical amyloid burden in late-life depression. Scientific Reports, 11(1), 15981. https://doi.org/10.1038/s41598-021-95206-0
Tang, Y., Xing, Y., Zhu, Z., He, Y., Li, F., Yang, J., Liu, Q., Li, F., Teipel, S. J., Zhao, G. & Jia, J. (2019). The effects of 7-week cognitive training in patients with vascular cognitive impairment, no dementia (the Cog-VACCINE study): A randomised controlled trial. Alzheimer’s & Dementia, 15(5), 605–614. https://doi.org/10.1016/j.jalz.2019.01.009
Teh, H. L., Suan, M., Azri, M., Ahmad, R. & Yahya, M. H. (2021). Development and validation of Dementia Solat Score for detecting cognitive impairment among Muslim patients: A pilot study. Neurology Asia, 26(4), 767–775. https://doi.org/10.54029/2021npw
Tosi, G., Borsani, C., Castiglioni, S., Daini, R., Franceschi, M. & Romano, D. (2020). Complexity in neuropsychological assessments of cognitive impairment: A network analysis approach. Cortex, 124, 85–96. http://dx.doi.org/10.1016/j.cortex.2019.11.004
Verfaillie, S. C., Tijms, B., Versteeg, A., Benedictus, M. R., Bouwman, F. H., Scheltens, P., Barkhof, F., Vrenken, H. & van der Flier, W. M. (2016). Thinner temporal and parietal cortex is related to incident clinical progression to dementia in patients with subjective cognitive decline. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 5, 43–52. https://doi.org/10.1016/j.dadm.2016.10.007
Wang, H., Jin, C., Yuan, K., Shakir, T. M., Mao, C., Niu, X., Niu, C., Guo, L. & Zhang, M. (2015). The alteration of gray matter volume and cognitive control in adolescents with internet gaming disorder. Frontiers in Behavioral Neuroscience, 9, 64. https://doi.org/10.3389/fnbeh.2015.00064
Wang, W. Y., Yu, J. T., Liu, Y., Yin, R. H., Wang, H. F., Wang, J., Tan, L., Radua, J. & Tan, L. (2015). Voxel-based meta-analysis of grey matter changes in Alzheimer's disease. Translational Neurodegeneration, 4, 6. https://doi.org/10.1186/s40035-015-0027-z
Wang, Y., Gao, D., Cui, B., Yu, B., Fang, J., Wang, Z., Tang, R., Cao, Z., Song, W., Song, P. & Li, S. (2021). Increased grey matter volume and associated resting-state functional connectivity in chronic spontaneous urticaria: A structural and functional MRI study. Journal of Neuroradiology, 48(4), 236–242. https://doi.org/10.1016/j.neurad.2021.01.011
Wang, Z., Williams, V. J., Stephens, K. A., Kim, C. M., Bai, L., Zhang, M. & Salat, D. H. (2020). The effect of white matter signal abnormalities on default mode network connectivity in mild cognitive impairment. Human Brain Mapping, 41(5), 1237–1248. https://doi.org/10.1002/hbm.24871
Wind, A. W., Schellevis, F. G., Van Staveren, G., Scholten, R. J., Jonker, C. & Van Eijk, J. T. M. (1997). Limitations of the Mini‐Mental State Examination in diagnosing dementia in general practice. International Journal of Geriatric Psychiatry, 12(1), 101–108. https://doi.org/10.1002/(sici)1099-1166(199701)12:1%3C101::aid-gps469%3E3.0.co;2-r
Woodworth, D. C., Sheikh-Bahaei, N., Scambray, K. A., Phelan, M. J., Perez-Rosendahl, M., Corrada, M. M., Kawas, C. H., Sajjadi, S. A. & Initiative, A. s. D. N. (2022). Dementia is associated with medial temporal atrophy even after accounting for neuropathologies. Brain Communications, 4(2), fcac052. https://doi.org/10.1093/braincomms/fcac052
Wu, H., Huang, Q., Yu, Z., Wu, H. & Zhong, Z. (2020). The SNPs rs429358 and rs7412 of APOE gene are association with cerebral infarction but not SNPs rs2306283 and rs4149056 of SLCO1B1 gene in southern Chinese Hakka population. Lipids in Health and Disease, 19(1), 202. https://doi.org/10.1186/s12944-020-01379-4
Xia, W., Luo, Y., Chen, Y. C., Zhang, D., Bo, F., Zhou, P., Chen, H., Wang, F., Yin, X. & Ma, J. (2018). Disrupted functional connectivity of the amygdala is associated with depressive mood in type 2 diabetes patients. Journal of Affective Disorders, 228, 207–215. https://doi.org/10.1016/j.jad.2017.12.012
Yokoi, T., Watanabe, H., Yamaguchi, H., Bagarinao, E., Masuda, M., Imai, K., Ogura, A., Ohdake, R., Kawabata, K. & Hara, K. (2018). Involvement of the precuneus/posterior cingulate cortex is significant for the development of Alzheimer's disease: a PET (THK5351, PiB) and resting fMRI study. Frontiers in Aging Neuroscience, 10, 304. https://doi.org/10.3389/fnagi.2018.00304
Younan, D., Petkus, A. J., Widaman, K. F., Wang, X., Casanova, R., Espeland, M. A., Gatz, M., Henderson, V. W., Manson, J. E. & Rapp, S. R. (2020). Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer's disease. Brain, 143(1), 289–302. https://doi.org/10.1093/brain/awz348
Zang, F., Zhu, Y., Zhang, Q., Tan, C., Wang, Q., Xie, C. & Alzheimer's Disease Neuroimaging, I. (2021). APOE genotype moderates the relationship between LRP1 polymorphism and cognition across the Alzheimer's disease spectrum via disturbing default mode network. CNS Neuroscience & Therapeutics, 27(11), 1385–1395. https://doi.org/10.1111/cns.13716
Zhao, J., Ma, Z., Chen, F., Li, L., Ren, M., Li, A., Jing, B. & Li, H. (2021). Human immune deficiency virus-related structural alterations in the brain are dependent on age. Human Brain Mapping, 42(10), 3131–3140. https://doi.org/10.1002/hbm.25423
Zheng, W., Su, Z., Liu, X., Zhang, H., Han, Y., Song, H., Lu, J., Li, K. & Wang, Z. (2018). Modulation of functional activity and connectivity by acupuncture in patients with Alzheimer disease as measured by resting-state fMRI. PLoS One, 13(5), e0196933. https://doi.org/10.1371/journal.pone.0196933
Zhou, J., Liu, S., Ng, K. K. & Wang, J. (2017). Applications of Resting-State Functional Connectivity to Neurodegenerative Disease. Neuroimaging Clinics of North America, 27(4), 663–683. https://doi.org/10.1016/j.nic.2017.06.007
Zucchella, C., Sinforiani, E., Tamburin, S., Federico, A., Mantovani, E., Bernini, S. & Bartolo, M. (2018). The multidisciplinary approach to Alzheimer's disease and dementia. A narrative review of non-pharmacological treatment. Frontiers in Neurology, 9, 418708. https://doi.org/10.3389/fneur.2018.01058
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Nur Hafizah Mohad Azmi , Subapriya Suppiah , Nur Shahidatul Nabila Ibrahim, Ibrahim Buhari, Vengkhata Priya Seriramulu , Mazlyfarina Mohamad , Thilakavathy Karuppiah , Nur Farhayu Omar, Normala Ibrahim, Rizzah Mazzuin Razali , Noor Harzana Harrun , Hakimah Mohammad Sallehuddin , Nisha Syed Nasser, Umar Ahmad

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.