Eye-tracking in behavioural sciences: a bibliometric analysis on research trends between 2015 - 2024
DOI:
https://doi.org/10.31117/neuroscirn.v8i4.393Keywords:
Eye-tracking, Behavioural sciences, Bibliometric analysis, Research trends, Thematic areasAbstract
Eye-tracking technology is one of the fundamental tools in scientific research. Eye-tracking data can provide detailed insights into visual attention, perception, and other cognitive processes. This bibliometric analysis aims to systematically review the state-of-the-art of eye-tracking studies in the behavioural sciences, identify emerging research trends and thematic areas, and uncover future research directions. A comprehensive analysis was conducted using the SCOPUS database. The search strategy included keywords related to eye-tracking. The retrieved articles were analysed for publication trends, co-authorship networks, keyword co-occurrences, and thematic evolution over time. The analysis identified 5,825 relevant articles published between 2015 and 2024. The state-of-the-art of this area of study in behavioural sciences reveals a substantial increase in publications over the past decade. Research trends and thematic analysis highlight seven key areas of study, in particular: (1) driving behaviour; (2) social cognition; (3) cognitive ageing; (4) language processing; (5) visual cognition; (6) cognitive processes; and (7) electroencephalography (EEG). For future work, the analysis suggests promising research avenues, including the application of eye-tracking in virtual reality environments, longitudinal studies of attentional development, and interdisciplinary approaches combining eye-tracking with machine learning techniques. This study provides a comprehensive overview of the current landscape of eye-tracking research in behavioural sciences. The findings emphasise the versatility of eye-tracking as a methodological tool and highlight key areas for future investigation. By identifying emerging trends and suggesting new research directions, this study contributes to the ongoing development of eye-tracking methodologies in behavioural research.
Downloads
References
Alon, Y., Bar-Haim, Y., Dykan, C. D. G., Suarez-Jimenez, B., Zhu, X., Neria, Y., & Lazarov, A. (2023). Eye-tracking indices of attention allocation and attention bias variability are differently related to trauma exposure and PTSD. Journal of Anxiety Disorders, 96, 102715. https://doi.org/10.1016/j.janxdis.2023.102715
Angele, B., & Duñabeitia, J. A. (2024). Closing the eye-tracking gap in reading research. Frontiers in Psychology, 15, 1425219. https://doi.org/10.3389/fpsyg.2024.1425219
Anstis, S. (2018). The role of the pupil, corneal reflex, and iris in determining the perceived direction of gaze. i-Perception, 9(4), 2041669518765852. https://doi.org/10.1177/2041669518765852
Atabay, E., & Güzeller, C. O. (2021). A bibliometric study on eye-tracking research in tourism. Tourism, 69(4), 595–610. https://doi.org/10.37741/t.69.4.8
Atkinson, A. P., & Smithson, H. E. (2020). The impact on emotion classification performance and gaze behavior of foveal versus extrafoveal processing of facial features. Journal of Experimental Psychology Human Perception & Performance, 46(3), 292–312. https://doi.org/10.1037/xhp0000712
Baceviciute, S., Lucas, G., Terkildsen, T., & Makransky, G. (2022). Investigating the redundancy principle in immersive virtual reality environments: an eye‐tracking and EEG study. Journal of Computer Assisted Learning, 38(1), 120–136. https://doi.org/10.1111/jcal.12595
Bachurina, V., Sushchinskaya, S., Sharaev, M., Burnaev, E., & Arsalidou, M. (2022). A machine learning investigation of factors that contribute to predicting cognitive performance: difficulty level, reaction time and eye-movements. Decision Support Systems, 155, 113713. https://doi.org/10.1016/j.dss.2021.113713
Bardeen, J. R., & Daniel, T. A. (2017). An eye-tracking examination of emotion regulation, attentional bias, and pupillary response to threat stimuli. Cognitive Therapy and Research, 41(6), 853–866. https://doi.org/10.1007/s10608-017-9860-y
Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91(2), 276–292. https://doi.org/10.1037/0033-2909.91.2.276
Broadbent, D. P., D’Innocenzo, G., Ellmers, T. J., Parsler, J., Szameitat, A. J., & Bishop, D. T. (2023). Cognitive load, working memory capacity and driving performance: a preliminary fNIRS and eye tracking study. Transportation Research Part F Traffic Psychology and Behaviour, 92, 121–132. https://doi.org/10.1016/j.trf.2022.11.013
Buhl, C., Sfärlea, A., Loechner, J., Starman-Wöhrle, K., Salemink, E., Schulte-Körne, G., & Platt, B. (2023). Biased maintenance of attention on sad faces in clinically depressed youth: an eye-tracking study. Child Psychiatry & Human Development, 54(1), 189–201. https://doi.org/10.1007/s10578-021-01229-z
Carter, B. T., & Luke, S. G. (2020). Best practices in eye tracking research. International Journal of Psychophysiology, 155, 49–62. https://doi.org/10.1016/j.ijpsycho.2020.05.010
Ceh, S. M., Annerer-Walcher, S., Koschutnig, K., Körner, C., Fink, A., & Benedek, M. (2021). Neurophysiological indicators of internal attention: an fMRI–eye-tracking coregistration study. Cortex, 143, 29–46. https://doi.org/10.1016/j.cortex.2021.07.005
Chacón-Candia, J. A., Ponce, R., & Marotta, A. (2024). The reverse congruency effect elicited by eye-gaze as a function of attention-deficit/hyperactivity disorder symptoms. Frontiers in Psychology, 15, 1377379. https://doi.org/10.3389/fpsyg.2024.1377379
Chen, Z., Yan, T., Cai, Y., Cui, T., & Chen, S. (2023). Using head-mounted eye trackers to explore children’s color preferences and perceptions of toys with different color gradients. Frontiers in Psychology, 14, 1205213. https://doi.org/10.3389/fpsyg.2023.1205213
Choe, M., Choi, Y., Park, J., & Kim, J. (2023). Head mounted IMU-based driver’s gaze zone estimation using machine learning algorithm. International Journal of Human-Computer Interaction, 40(23), 7970–7981. https://doi.org/10.1080/10447318.2023.2276520
Chung, C., Choi, S., Jeong, H., Lee, J., & Lee, H. (2023). Attention mechanisms and emotion judgment for Korean and American emotional faces: an eye movement study. Frontiers in Psychology, 14, 1235238. https://doi.org/10.3389/fpsyg.2023.1235238
Coloma, C. J., Guerra, E., De Barbieri, Z., & Helo, A. (2024). Article comprehension in monolingual Spanish-speaking children with developmental language disorder: a longitudinal eye tracking study. International Journal of Speech-Language Pathology, 26(1), 105–117. https://doi.org/10.1080/17549507.2023.2167235
De Belen, R. A., Pincham, H., Hodge, A., Silove, N., Sowmya, A., Bednarz, T., & Eapen, V. (2023). Eye-tracking correlates of response to joint attention in preschool children with autism spectrum disorder. BMC Psychiatry, 23(1), 211. https://doi.org/10.1186/s12888-023-04585-3
D’Innocenzo, G., Della Sala, S., & Coco, M. I. (2022). Similar mechanisms of temporary bindings for identity and location of objects in healthy ageing: an eye-tracking study with naturalistic scenes. Scientific Reports, 12(1), 11163. https://doi.org/10.1038/s41598-022-13559-6
Duchowski, A. (2007). Eye tracking methodology. Eye Tracking Methodology: Theory and Practice. Springer London, United Kingdom. https://doi.org/10.1007/978-1-84628-609-4
Feldmann, L., Zsigo, C., Mörtl, I., Bartling, J., Wachinger, C., Oort, F., Schulte-Körne, G., & Greimel, E. (2023). Emotion regulation in adolescents with major depression - evidence from a combined EEG and eye-tracking study. Journal of Affective Disorders, 340, 899–906. https://doi.org/10.1016/j.jad.2023.08.087
Fernandes, E. G., Tatler, B. W., Slessor, G., & Phillips, L. H. (2024). Age differences in gaze following: older adults follow gaze more than younger adults when free-viewing scenes. Experimental Aging Research, 50(1), 84–101. https://doi.org/10.1080/0361073x.2022.2156760
Fiolić, M., Babić, D., Babić, D., & Tomasović, S. (2023). Effect of road markings and road signs quality on driving behaviour, driver’s gaze patterns and driver’s cognitive load at night-time. Transportation Research Part F: Traffic Psychology and Behaviour, 99, 306–318. https://doi.org/10.1016/j.trf.2023.10.025
Fogd, D., Sebanz, N., & Kovács, Á. M. (2024). Flexible social monitoring as revealed by eye movements: spontaneous mental state updating triggered by others’ unexpected actions. Cognition, 249, 105812. https://doi.org/10.1016/j.cognition.2024.105812
Fu, X., Bolton, S. H., Morningstar, M., Mattson, W. I., Feng, X., & Nelson, E. E. (2024). Young children of mothers with a history of depression show attention bias to sad faces: an eye-tracking study. Research on Child and Adolescent Psychopathology, 52(9), 1469–1483. https://doi.org/10.1007/s10802-024-01205-w
Guerra, E., Coloma, C. J., & Helo, A. (2024). Lexical-semantic processing in preschoolers with developmental language disorder: an eye tracking study. Frontiers in Psychology, 15, 1338517. https://doi.org/10.3389/fpsyg.2024.1338517
Harris, A. M., Eayrs, J. O., & Lavie, N. (2023). Establishing gaze markers of perceptual load during multi-target visual search. Cognitive Research Principles and Implications, 8(1), 56. https://doi.org/10.1186/s41235-023-00498-7
Harzing, A. W. (2007). Publish or Perish. Harzing.com. https://harzing.com/resources/publish-or-perish
Hautala, J., Hawelka, S., & Ronimus, M. (2024). An eye movement study on the mechanisms of reading fluency development. Cognitive Development, 69, 101395. https://doi.org/10.1016/j.cogdev.2023.101395
Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & van de Weijer, J. (2011). Eye tracking: a comprehensive guide to methods and measures. OUP Oxford, United Kingdom. https://books.google.com.my/books?id=5rIDPV1EoLUC
Hou, W., Zhao, W., & Li, J. (2024). Intact gesture cueing of attention but attenuated sensitivity to peripheral social targets in autistic children: an eye-tracking and pupillometric study. Biological Psychology, 191, 108822. https://doi.org/10.1016/j.biopsycho.2024.108822
Huang, J., Zhang, G., Dang, J., Chen, Y., & Miyamoto, S. (2023). Semantic processing during continuous speech production: an analysis from eye movements and EEG. Frontiers in Human Neuroscience, 17, 1253211. https://doi.org/10.3389/fnhum.2023.1253211
Karch, J. M., Valles, J. C. G., & Sevian, H. (2019). Looking into the black box: using gaze and pupillometric data to probe how cognitive load changes with mental tasks. Journal of Chemical Education, 96(5), 830–840. https://doi.org/10.1021/acs.jchemed.9b00014
Keil, V., Hepach, R., Vierrath, S., Caffier, D., Tuschen-Caffier, B., Klein, C., & Schmitz, J. (2018). Children with social anxiety disorder show blunted pupillary reactivity and altered eye contact processing in response to emotional faces: insights from pupillometry and eye movements. Journal of Anxiety Disorders, 58, 61–69. https://doi.org/10.1016/j.janxdis.2018.07.001
Keskin, M., Ooms, K., Dogru, A. O., & De Maeyer, P. (2020). Exploring the cognitive load of expert and novice map users using EEG and eye tracking. ISPRS International Journal of Geo-Information, 9(7), 429. https://doi.org/10.3390/ijgi9070429
Klin, A., Jones, W., Schultz, R., Volkmar, F., & Cohen, D. (2002). Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Archives of General Psychiatry, 59(9), 809. https://doi.org/10.1001/archpsyc.59.9.809
Kulke, L., Ertugrul, S., Reyentanz, E., & Thomas, V. (2024). Uncomfortable staring? Gaze to other people in social situations is inhibited in both infants and adults. Developmental Science, 27(3), e13468. https://doi.org/10.1111/desc.13468
Larsen, O. F. P., Tresselt, W. G., Lorenz, E. A., Holt, T., Sandstrak, G., Hansen, T. I., Su, X., & Holt, A. (2024). A method for synchronized use of EEG and eye tracking in fully immersive VR. Frontiers in Human Neuroscience, 18, 1347974. https://doi.org/10.3389/fnhum.2024.1347974
Li, H., Li, Z., Lyu, G., Wang, M., Liu, B., Zhang, Y., Li, L., & Siegle, G. J. (2023). Suicide-relevant information processing in unipolar and bipolar depression: an eye-tracking study. Journal of Psychopathology and Clinical Science, 132(4), 361–371. https://doi.org/10.1037/abn0000807
Li, J., Zhou, Y., & Gao, X. (2022). The advantage for action video game players in eye movement behavior during visual search tasks. Current Psychology, 41(12), 8374–8383. https://doi.org/10.1007/s12144-022-03017-x
Lian, X., Hong, W. C. H., Gao, F., Kolletar-Zhu, K., Wang, J., Cai, C., Yang, F., Chen, X., Wang, Z., & Gao, H. (2023). The effect of background elements of pictures on the visual attention among ASD children with intellectual disabilities, children with intellectual disabilities and typical development: evidence from eye-tracking and fMRI. Research in Developmental Disabilities, 141, 104602. https://doi.org/10.1016/j.ridd.2023.104602
Lidle, L. R., & Schmitz, J. (2024). Assessing visual avoidance of faces during real-life social stress in children with social anxiety disorder: a mobile eye-tracking study. Child Psychiatry & Human Development, 55(1), 24–35. https://doi.org/10.1007/s10578-022-01383-y
Lu, W., Dostálová, N., Lacko, D., Šašinková, A., & Šašinka, Č. (2023). From reading style to cognitive style and its possible application: an eye-tracking and CFT approach. Asian-Pacific Journal of Second and Foreign Language Education, 8(1), 22. https://doi.org/10.1186/s40862-023-00195-4
Macatee, R. J., Albanese, B. J., Schmidt, N. B., & Cougle, J. R. (2017). The moderating influence of heart rate variability on stressor-elicited change in pupillary and attentional indices of emotional processing: an eye-tracking study. Biological Psychology, 123, 83–93. https://doi.org/10.1016/j.biopsycho.2016.11.013
Masson, N., Dormal, V., Stephany, M., & Schiltz, C. (2024). Eye movements reveal that young school children shift attention when solving additions and subtractions. Developmental Science, 27(2), e13452. https://doi.org/10.1111/desc.13452
Mattavelli, S., Brambilla, M., & Kret, M. E. (2022). It is written in the eyes: inferences from pupil size and gaze orientation shape interpersonal liking. Social Cognition, 40(1), 88–106. https://doi.org/10.1521/soco.2022.40.1.88
Mazloum-Farzaghi, N., Shing, N., Mendoza, L., Barense, M. D., Ryan, J. D., & Olsen, R. K. (2023). The impact of aging and repetition on eye movements and recognition memory. Aging Neuropsychology and Cognition, 30(3), 402–428. https://doi.org/10.1080/13825585.2022.2039587
Meregalli, V., Tenconi, E., Cardi, V., Bonifanti, A., Meneguzzo, P., Favaro, A., & Collantoni, E. (2023). Strategic avoidance of food stimuli in patients with restrictive anorexia nervosa: an eye‐tracking evaluation. European Eating Disorders Review, 31(6), 813–821. https://doi.org/10.1002/erv.3011
Mo, S., Huo, J., Wang, Y., & Bai, J. (2024). Exploring the impact of autistic traits and anxiety on visual attentional response to angry faces in adults with high autistic traits: an eye-movement study. Research in Autism Spectrum Disorders, 115, 102415. https://doi.org/10.1016/j.rasd.2024.102415
Moss, C., Kwabi, S., Ardoin, S. P., & Binder, K. S. (2024). Eye movements and reading comprehension performance: examining the relationships among test format, working memory capacity and reading comprehension. Reading and Writing, 37(3), 703–729. https://doi.org/10.1007/s11145-023-10428-0
Naveh-Benjamin, M., & Cowan, N. (2023). The roles of attention, executive function and knowledge in cognitive ageing of working memory. Nature Reviews Psychology, 2(3), 151–165. https://doi.org/10.1038/s44159-023-00149-0
Pabst, A., Bollen, Z., Masson, N., Billaux, P., De Timary, P., & Maurage, P. (2023). An eye-tracking study of biased attentional processing of emotional faces in severe alcohol use disorder. Journal of Affective Disorders, 323, 778–787. https://doi.org/10.1016/j.jad.2022.12.027
Pabst, A., Bollen, Z., Masson, N., Gautier, M., Geus, C., & Maurage, P. (2024). Altered attentional processing of facial expression features in severe alcohol use disorder: an eye-tracking study. Journal of Psychopathology and Clinical Science, 133(1), 103–114. https://doi.org/10.1037/abn0000868
Paulson, E. J., Holschuh, J. P., & Lampi, J. P. (2024). Using college readers’ eye movements to discuss textbook reading strategies. Journal of Adolescent & Adult Literacy, 67(5), 274–282. https://doi.org/10.1002/jaal.1332
Portera, A., & Bassani, M. (2024). Examining the impact of different LED road stud layouts on driving performance and gaze behaviour at night-time. Transportation Research Part F: Traffic Psychology and Behaviour, 103, 430–441. https://doi.org/10.1016/j.trf.2024.04.024
Purcell, Z. A., Roberts, A. J., Handley, S. J., & Howarth, S. (2023). Eye movements, pupil dilation, and conflict detection in reasoning: exploring the evidence for intuitive logic. Cognitive Science, 47(6), e13293. https://doi.org/10.1111/cogs.13293
Qin, T., Fias, W., Van De Weghe, N., & Huang, H. (2024). Recognition of map activities using eye tracking and EEG data. International Journal of Geographical Information Systems, 38(3), 550–576. https://doi.org/10.1080/13658816.2024.2309188
Radhakrishnan, V., Louw, T., Gonçalves, R. C., Torrao, G., Lenné, M. G., & Merat, N. (2023). Using pupillometry and gaze-based metrics for understanding drivers’ mental workload during automated driving. Transportation Research Part F Traffic Psychology and Behaviour, 94, 254–267. https://doi.org/10.1016/j.trf.2023.02.015
Ratiu, I., Fissel-Brannick, S., Whiting, M., Murnion, L., & Azuma, T. (2022). The impact of mild traumatic brain injury on reading comprehension and eye movements: preliminary results. Journal of Communication Disorders, 96, 106197. https://doi.org/10.1016/j.jcomdis.2022.106197
Ruppenthal, T., & Schweers, N. (2024). Eye tracking as an instrument in consumer research to investigate food from a marketing perspective: a bibliometric and visual analysis. Journal of Theoretical and Applied Electronic Commerce Research, 19(2), 1095–1117. https://doi.org/10.3390/jtaer19020057
Sahan, M. I., Siugzdaite, R., Mathôt, S., & Fias, W. (2024). Attention-based rehearsal: eye movements reveal how visuospatial information is maintained in working memory. Journal of Experimental Psychology Learning Memory and Cognition, 50(5), 687–698. https://doi.org/10.1037/xlm0001291
Salgado-Fernández, A., Vázquez-Amor, A., Alvarez-Peregrina, C., Martinez-Perez, C., Villa-Collar, C., & Sánchez-Tena, M. Á. (2022). Influence of eye movements on academic performance: a bibliometric and citation network analysis. Journal of Eye Movement Research, 15(4). https://doi.org/10.16910/jemr.15.4.4
Scharinger, C., Prislan, L., Bernecker, K., & Ninaus, M. (2023). Gamification of an n-back working memory task: is it worth the effort? An EEG and eye-tracking study. Biological Psychology, 179, 108545. https://doi.org/10.1016/j.biopsycho.2023.108545
Scharinger, C., Schüler, A., & Gerjets, P. (2020). Using eye-tracking and EEG to study the mental processing demands during learning of text-picture combinations. International Journal of Psychophysiology, 158, 201–214. https://doi.org/10.1016/j.ijpsycho.2020.09.014
Shojaeizadeh, M., Djamasbi, S., Paffenroth, R. C., & Trapp, A. C. (2019). Detecting task demand via an eye tracking machine learning system. Decision Support Systems, 116, 91–101. https://doi.org/10.1016/j.dss.2018.10.012
Strandberg, A., Nilsson, M., Östberg, P., & Seimyr, G. Ö. (2023). Eye movements are stable predictors of word reading ability in young readers. Frontiers in Education, 8, 1077882. https://doi.org/10.3389/feduc.2023.1077882
Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
Watling, C. N., Larue, G. S., Wood, J. M., Black, A., Watling, C. N., Larue, G. S., Wood, J. M., & Black, A. (2022). An on-road examination of daytime and evening driving on rural roads: physiological, subjective, eye gaze, and driving performance outcomes. Attention Perception & Psychophysics, 84(2), 418–426. https://doi.org/10.3758/s13414-021-02424-9
Yang, W., Chen, Q., Huang, X., Xie, J., Xie, M., & Shi, J. (2022). Image and text presentation forms in destination marketing: an eye-tracking analysis and a laboratory experiment. Frontiers in Psychology, 13, 1024991. https://doi.org/10.3389/fpsyg.2022.1024991
Yao, B., Scott, G. G., Bruce, G., Monteith-Hodge, E., & Sereno, S. C. (2024). Emotion processing in concrete and abstract words: evidence from eye fixations during reading. Cognition & Emotion, 39(7), 1625–1634. https://doi.org/10.1080/02699931.2024.2367062
Yuen, N. H., Tam, F., Churchill, N. W., Schweizer, T. A., & Graham, S. J. (2021). Driving with distraction: measuring brain activity and oculomotor behavior using FMRI and eye-tracking. Frontiers in Human Neuroscience, 15, 659040. https://doi.org/10.3389/fnhum.2021.659040
Yüvrük, E., Tütüncü, I. S., & Amado, S. (2024). How do face processing strategies and eye-movements contribute to individual differences in face recognition ability? Current Psychology, 43(16), 14136–14147. https://doi.org/10.1007/s12144-023-05433-z
Zammarchi, G., & Conversano, C. (2021). Application of eye tracking technology in medicine: a bibliometric analysis. Vision, 5(4), 56. https://doi.org/10.3390/vision5040056
Zemblys, R., Niehorster, D. C., Komogortsev, O., & Holmqvist, K. (2018). Using machine learning to detect events in eye-tracking data. Behavior Research Methods, 50(1), 160–181. https://doi.org/10.3758/s13428-017-0860-3
Zhang, X., Chang, R., Sui, X., & Li, Y. (2022). Influences of emotion on driving decisions at different risk levels: an eye movement study. Frontiers in Psychology, 13, 788712. https://doi.org/10.3389/fpsyg.2022.788712
Zheng, X., Wang, H., Hao, T., Chen, S., Xu, K., & Wang, Y. (2024). Evaluation of mental load using EEG and eye movement characteristics. Ergonomics, 67(11), 1553–1574. https://doi.org/10.1080/00140139.2024.2342439
Zsidó, A. N. (2023). The effect of emotional arousal on visual attentional performance: a systematic review. Psychological Research, 88(1), 1–24. https://doi.org/10.1007/s00426-023-01852-6
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Hafidah Umar, Faiz Mustafar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.